
International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

64

A Study for Regression Testing Techniques and Tools

1Passant Kandil, 2Sherin Moussa, 3Nagwa Badr

Department of Information Systems,
Ain Shams University, Cairo, Egypt

Email: 1: passant.kandil@cis.asu.edu.eg, 2sherinmoussa@cis.asu.edu.eg,

3nagwa.badr@cis.asu.edu.eg

Abstract. Regression testing is a part of the software testing activity, which is an important
activity of the software development life cycle and the maintenance process. It is carried out
to ensure that changes made in the fixes or any enhancement changes are not influencing the
previously working functionality. Regression testing is mostly done by re-running existing
test cases against the modified code to determine whether the changes affect anything. This
requires a lot of cost and time, which increases as the size and the complexity of the software
increases. Instead of re-running all the test cases, a number of different approaches were
studied to solve regression-testing problems. There has been an explosion in the use of data
mining techniques in the exploration and analysis of large quantities of data in order to
discover meaningful patterns and rules. Data mining models were introduced for software
testing to design a minimal set of regression tests. This helps solving regression testing
problems with large-scale systems that are usually accompanied by thousands set of test
cases, where it is considered impossible to re-run all of them each time a system update is
applied. Therefore, data mining is investigated to handle such cases. In this paper, we
investigate the different techniques proposed to solve the regression testing problems, where a
comprehensive study is conducted for analysis and evaluation. We also discuss the tools
presented in market for the regression testing. Finally, we present our proposed approach for
regression testing using data mining techniques. The main advantage of this new approach is
that it can be applied on large-scale systems having thousands of test cases. The proposed
regression-testing algorithm considers time and cost constraints with no human intervention.

Keywords: Software Testing, Regression Testing, Large-scale Systems, Test Cases Prioritization &
Selection, and Data Mining.

* Corresponding Author:
Passant Kandil,
Department of Information Systems, Ain Shams University,
Cairo, Egypt,
Email: Passant.kandil@cis.asu.edu.eg Tel: (202) 6831231

1. Introduction

Software testing is a significant part of software engineering. It typically consumes 40 - 50% of
development efforts, where this percentage increases for systems that need higher levels of reliability

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

65

[1]. The purpose of testing is operating the software under certain conditions to detect errors in order to
fix the problems in the system and ensures that the system meets the requirements and does what it is
expected to do in the intended environment. Different types of testing exist like Unit Testing,
Integration testing… etc. Each occurs for a certain scope and for a certain specification.
Regression testing is one type of software testing that is performed with changes of an existing
software. It is essential to provide confidence that such changes, which are newly introduced, do not
obstruct the behavior of the unchanged existing parts of the software. Regression testing is costly, and
represents a very important problem in the software development. Common methods of regression
testing are re-running previously completed test cases and then checking whether the program behavior
has been changed or the previously fixed faults have re-emerged. This requires a lot of cost and time as
the size and complexity of the software increase. Different techniques were presented to solve
regression-testing problems like regression test cases selection, regression test cases reduction and
regression test cases prioritization.

Figure 1: Regression Testing Approaches

The main concerns of these techniques when conducting regression tests are:

Figure 2 : Regression techniques Constraints

 Adequate coverage without wasting time.

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

66

 Software bugs and errors resulting from introducing the new changes are discovered earlier.
 Terminate regression testing if it is required at any instance for time-related constraints and

alerted with the most expected software bugs and errors.

During the last several decades, new changes in software engineering have already become ordinary
with the development of modern methods, technologies, and tools, which allow the functionality and
complexity of modern systems, grow exponentially. Accordingly, as the functionality and complexity
of the system grow, the cost and complexity of testing such a system grow as well. This limitation
forces the consideration of techniques that seek to minimize the time, effort and cost required for
regression testing in various ways, without sacrificing the thoroughness of regression testing. Another
challenge is to handle the scalable data represented in the huge number of test cases associated with the
large-scale systems that are currently developed due to the advancements in technologies.
Simultaneously, there has been an explosion in the use of data mining techniques in the analysis of
large quantities of data in order to discover meaningful patterns and rules. This allowed the potential
use of the data mining algorithms to solve regression testing problems.
The rest of the paper is organized as follows: Section two introduces the parameters of evaluation used
to study and evaluate the different proposed techniques. Section three investigates the different
techniques used in regression test cases selection, reduction and prioritization, with a detailed analysis
of the main issues and concerns fronting these techniques. Section four illustrates applying data mining
techniques to regression testing. Section five presents the tools used in the market for regression
testing. Sections six analyzes the different challenges of regression testing, emphasizing the current
research gap in this field. Section seven, presents our proposed approach of regression testing for large-
scale systems. Finally, we conclude our study.

2. Parameters of Evaluation of Regression Testing

Several parameters have been used throughout the recent research to evaluate the different
regression testing techniques. Parameters have varied depending on whether the technique
applies selection, reduction or prioritization.

2.1 Selection Evaluation Parameters:

Many studies have deducted some evaluation parameters of the selection techniques.
Those parameters represent a set of basis in which selective techniques can be compared
and evaluated.

1. Inclusiveness: This parameter measures the extent to which a selective re-test
strategy S selects modification-revealing tests from the initial test suit T for
inclusion in T′, where a test ܶ݅ ∈ ܶ is a modification revealing if it produces
different outputs in P and P[2].

2. Efficiency: This parameter measures the efficiency of the selection algorithm in
terms of space and time requirements. Space efficiency is affected by the test
history and program analysis information. It varies the efficiency of S with the size
of test cases that a method stores, as well as with the computational cost of that
method [2].

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

67

3. Generality: This parameter measures the ability of a selective re-test strategy to
function in a wide and practical range of situations[2].

4. Accountability: This parameter measures the extent to which a selective re-test
strategy promotes the use of structural coverage criteria, as it increases the
effectiveness of testing [2].

5. Precision: it represents the accuracy degree of selection, which measures the extent
to which a selective re-test strategy S ignores test cases that are non-modification-
revealing[2], [3].

݊݅ݏ݅ܿݎ݁ܲ ൌ
|்ᇲி|

|்ᇲ|
 … (1)

 Where T’F is the set of failed test cases from T’, which is the set of selected test
cases.

6. Recall: it represents the completeness of test selection, which measures the
proportion of selected failed tests in all failed tests [3].

ܴ݈݈݁ܿܽ ൌ
|்ᇲி|

|்|
…….. (2)

Where T’F is the set of failed test cases from T, which is the set of all failed test
cases.

7. F- Measure: This parameter evaluates the integrative benefit of the precision and
recall measures by the combination of the two parameters [3].

݁ݎݑݏܽ݁ܯܨ ൌ
2 ∗ ݊݅ݏ݅ܿ݁ݎܲ ∗ ܴ݈݈݁ܿܽ
݊݅ݏ݅ܿ݁ݎܲ ܴ݈݈݁ܿܽ

… ሺ3ሻ

2.2 Reduction Evaluation Parameters:

Different evaluation parameters were emerged to evaluate the reduction techniques.

1. Test Suite Size Reduction (TSSR): It determines the percentage of the test suite

reduction by using the following equation [4], [5],[6]:

ܴܶܵܵ ൌ |்ௌ|ି|்ௌௗ|

|்ௌ|
∗ 100%..... (4)

Where |TSorig|, |TSred| represents the sizes of the original and reduced test suite.

2. Fault Detection Capability (FDC) Loss: it determines the percentage of the test
suite fault detection capability loss by using the following equation [4],[6]:

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

68

ܥܦܨ ൌ |ி|ି|ிௗ|

|ி|
∗ 100%..... (5)

Where |Forig| and |Fred| represents the total number of unique fault revealed by
the original and reduced test suites.

3. Percentage of Test Suite Reduction: It represents the percentage by which the test
suite was reduced from the original suite [5],[6] :

100 ∗ ሺ1 െ
௦௭	ௗ௨ௗ

௦௭	
ሻ… (6)

4. Fault Detection Rate: it represents the percentage by which the rate of faults is

detected [6],[5]:

 100 ∗ ሺ
ி௨௧௦	ௗ௧௧ௗ	ௗ௨ௗ

ி௨௧௦	ௗ௧௧ௗ	
ሻ…….. (7)

2.3 Prioritization Evaluation Parameters:

Another group of evaluation parameters were used to evaluate test cases prioritization
techniques.

1. APFD (Average Percentage Fault Detection): It is a metric used to measure the
test suite’s fault detection rate. The fault detection rate is a measure of how
quickly faults are detected during the testing process. The closer the value is to
100, the better the prioritization technique is [7].

	ܦܨܲܣ ൌ 	1	–
ሺ்ிଵ	ା	்ிଶାା	்ிሻ

	
 	1/2݊….. (8)

where: m -> is the number of faults contained in the program under test P, n -> is
the total number of test cases, and TFi -> is the position of the first test in T that
exposes fault i.

2. APFDc (Average Percentage Fault Detection with cost): It is a metric, which
incorporates not just the rate of fault detection but also the severity of detected
faults and the expense of executing test cases [7].

cܦܨܲܣ ൌ
∑ ሺ∗ሺ∑ ௧ିభ

మ
௧ಷሻ

ೕసಷ

సభ

∑ ௧

సభ ∗	∑

సభ

 …… (8)

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

69

Where T is the set of n test cases with costs t1, tn, and F is the set of m faults with
severity values f1.., fm. For ordering T’, let TFi be the order of the first test case
that reveals the index fault.

3. EVOMO (Evolution-aware economic cost model): A cost model that captures

the costs and benefits of regression testing methodologies and how much revenue
they help organizations obtain. EVOMO involves two equations: first that captures
costs related to the salaries of the engineers who perform regression testing (to
translate time spent into monetary values). The second one that captures revenue
gains or losses related to changes in system release time (to translate time-to-
release into monetary values) [8].

ݐݏܥ .1 ൌ ܲܵ ∗ ∑ ሺ	ܵܥሺ݅ሻ COi	ሺi	ሻ 	COr	ሺi	ሻ 	 	bሺi	ሻ	_	CVi	ሺi	ሻ 	

ୀଶ
	cሺi	ሻ	_	CFሺi	ሻሻ….. (9)

ݐ݂݅݁݊݁ܤ .2 ൌ 	REV ∗	∑ ሺEDሺi	ሻ 	െ 	ሺCSሺi	ሻ 	COi	ሺi	ሻ 	COr	ሺi	ሻ
ୀଶ

	ain ∗ CAin	ሺi	 െ 	1	ሻ 	atr	ሺi	 െ 	1	ሻ	_	CAtr	ሺi	 െ 	1	ሻ 	 	CRሺi	ሻ 	
	bሺi	ሻ	_	ሺCEሺi	ሻ 	 	CVi	ሺi	ሻ 	 	CVd	ሺi	ሻሻ 	 	CDሺi	ሻሻሻ…………(10)

Where:
 PS is Average hourly programmer’s salary in dollars per unit u.
 CS (i) is time to perform setup activities required to test Si.
 COi(i) is Time to identify tests that are obsolete for Si.
 COr (i) is time to repair obsolete tests for Si.
 b(i) is Coefficient to capture reductions in costs of executing and validating

test cases.
 CVi (i) is Human time for inspecting the results of test cases.
 c(i) is Number of faults that are not detected by a test suite applied to Si.
 CF(i) is Cost of missed faults after delivery of Si.
 REV is Revenue in dollars per unit u.
 ED(i) Expected time-to-delivery for Sw system when testing begins.
 ain (i) Coefficient to capture reductions in costs of instrumentation for Si due

to the use of incremental analysis techniques.
 atr (i) Coefficient to capture reductions in costs of trace collection for Si due

to the use of incremental analysis techniques.
 CAin(i) is Time to instrument all units in i.
 CAtr (i) is Time to collect traces for test cases in Si−1.
 CR(i) is Time to execute a prioritization technique on Si.
 CE(i) is Time to execute test cases on Si.
 CVd (i) is Time to use tools to check outputs of test cases on Si.
 CD(i) is Cost of delayed fault detection feedback on Si.
 S is the SW system and I is Index denoting a release Si of S.

4. RFFT (Reduction Factor For Time): It reflects how fast is the reduced test suite
by measuring the difference of execution time between the original test suite and
the reduced test suite. An RFFT of Zero means that T and Tr execute for the same
length of time [9].

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

70

RFFT	ሺT, Trሻ 	ൌ time	ሺTሻ 	െ 	time	ሺTrሻ/	time	ሺTሻ		... (11)

Where T is a given test suite and Tr is its reduced form.

5. RFFS (Reduction Factor For Size): It reflects the percentage of original test
cases that continue after reduction. An RFFS of Zero means that the algorithm
removed none of the test cases; while an RFFS near 1 means that the reducer
removed many test cases [9].

RFFS	ሺT, Trሻ 	ൌ |T| 	െ	 |Tr|	/	|T	|	… (12)

 Where T is a given test suite and Tr is its reduced form.

6. CE (Coverage Effectiveness): This measure determines the cumulative coverage
of the tests over time; it takes the input of a test suite T and a time l and returns
the total number of requirements covered by T after running for l time units [9].

7. PTR (Problem Tracking Report): it measures the effective prioritization
technique by putting the test cases that are most likely has a fault equal to number
of test cases detect a fault/Total number of test cases[10].

,ݐሺݎݐܲ ሻ ൌ ௗ

…… (13)

Where t is test suite under evaluation, nd is the total number of test cases needed
to detect faults and n is the total number of test cases under test.

3. Regression Testing Techniques

In this section, we present the different techniques studied to solve the regression testing problems.
Different techniques have been studied to solve regression testing problems such as Test Cases
Reduction which permanently eliminates test cases from the test suite, Test cases prioritization which
orders the test cases by certain measures and test cases selection which seeks to select the test cases
that are relevant to some set of recent changes.

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

71

Figure 3: Different Regression Testing Technique

3.1 Test Cases Selection Techniques

Regression test cases selection techniques aim at selecting a relevant subset of test
cases from the initial test suite instead of re-running the complete test suite, which minimizes
both regression testing time and effort without sacrificing the thoroughness of regression
testing. Different techniques were considered for test cases selection, where most of them
apply one of the following approaches:

1. Code-based: which uses the relationship between the code and test cases. It selects test
cases based on the changes occur, where two versions of the code - before the change and
after it – are required.

2. Model-based: which uses the relationship between the model elements and test cases.
These elements are traversed to select the test cases that will be used in re-testing. Most
of these techniques are based on the UML models, where different UML models are used
in this approach.

Some of the code-based approaches are very specific to the programming language used to
develop the code [2]. The code-based approach causes problems for software products that are
large, complex, and are frequently modified. In addition, it becomes more problematic if different
parts of a program are written in different programming languages. Some techniques overcome the
drawbacks of the code-based approach by using hybrid approach, which combines between the
code-based and the model-based.

Swarnendu Biswas et al [11], proposed a model-based regression test selection technique for
embedded programs. They proposed a graph model constructed from program analysis, which
captured the different characteristics of embedded programs that were relevant to test selection. It
then enhanced the model with information extracted from the SRS document, the analysis and the
design models.

Analysis: This technique focused on regression test selection of embedded programs. Moreover, it
was applied on small applications.

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

72

Qurat-ul-ann Farooq et al [12] introduced a state-based selective regression testing methodology
for evolving state-based systems along with a tool support named START - an Eclipse-based tool
for state-based regression testing compliant with UML 2.1 semantics. The proposed technique
used the relationships between the class diagram, state machine and the corresponding test suite to
deal with the change propagation. Changes in the class diagram were captured by comparing the
baseline version and the delta version of the class diagrams along with class invariants and
operation contracts. After capturing the class-driven changes, the authors developed a
“StateMachineComparator” tool that compared the baseline and delta version of state machines
along with state invariants. Changes in both versions were detected and class-driven changes were
used to obtain the affected elements of the state machine. At the end set of affected test, cases were
selected using “RegressionTestSelector” tool that traced the state-driven changes to the
corresponding test cases.

Analysis: The advantage of this technique is that it reported a tool support for the model-based
regression test selection. However, it was applied only on one case study.

Ruchika Malhotra et al, [13] on the other hand, introduced another regression test selection and
prioritization technique, which prioritized test cases in test suite and selected from the prioritized
test suite. It recommended using high priority test cases first and then low priority test cases and so
on until both time and resources are available or a reasonable level of confidence about correctness
is achieved. This technique used two main algorithms:

a. A modification algorithm that determines the modified source code and counts the
number of modified lines of source code covered by each test case.

b. A deletion algorithm that deletes the number of deleted source code lines from the
count of the test case and removes those test cases that cover only those lines that are
covered by other test cases of the program.

Analysis: The technique combined both selection and prioritization, which helped in reducing the
test cases by a significant number. However, no metrics were used for evaluating the technique,
nor for determining how prioritization is done. It was not applied on large size programs, which
cannot guarantee the efficiency and scalability of the technique.

In 2012, Chhabi Rani et al [14] introduced a hybrid technique for regression test cases selection for
Object-Oriented Programming. This technique was based on both the source code of an object-
oriented program and the UML state machine models of the affected classes. The technique
constructed a dependency graph model that captured the control, data dependency and model
elements affected during the change. The technique also determined the affected methods from the
state machine model. It selected for regression the test cases that traverse not only the affected
model elements in program, but also the affected methods in the state machine. The technique was
compared to Larsen and Harold’s [18] which constructed system dependence graphs for object-
oriented software by applying efficient slicing algorithms. A system dependence graph consisted
of a program dependence graph representing the “main” program either in the system or in a
simulation of a calling environment, whereas a class dependence graph represented classes
constructed for each class in the system.

Analysis: The technique increased the selection of faults revealing test cases by 27.89%
comparing to Larsen an Harold’s System Dependence Graph. However, it was applied only to
small examples of programs that cannot guarantee its scalability.

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

73

3.2 Test Cases Reduction Techniques

Test cases reduction techniques focus on finding a minimized set of test cases without
compromising fault detection capability. This improves the required testing effort by identifying
and eliminating the redundant (or unnecessary) test cases according to some test adequacy criteria.

Dmitry Kichigin [5] introduced a test suite reduction technique for regression testing of
simple interactions between two software modules. The technique was based on modelling the
behavior of interactions between software modules and used sequences of interface functions
invoked during software execution. The module’s interactions were modeled using the sequences
of module’s interface functions invoked during the execution of a program. The parameters passed
to the functions were considered as well as their names and the tests that initiate the same
sequences of interface functions repeat themselves in the module interactions that they test. The
size of reduced test suite, percentage of reduction and fault detection rate metrics were used to
evaluate this technique.

Analysis: The technique did not require source code access or instrumentation, as it was
based on modelling of interactions “behavior” on a test suite. However, only simple interactions
between two modules were considered for this technique, which makes results on complex
interactions are not guaranteed.

At 2010, Saeed Parsa et a [6] presented a greedy algorithm for reduction named ” Bi-Objective
greedy algorithm”, which aimed to select a test case that satisfied the maximum number of testing
requirements, while having minimum overlap in requirements coverage with other test cases. The
objective of this algorithm was to (i) select effective test cases in fault detection, and to (ii) remove
redundancy from the test suite. It selected unique test cases in terms of requirements coverage to
achieve significant suite size reduction and improved their fault detection effectiveness, then used
test case-requirement matrix, which showed the mappings between test cases and testing
requirements. The elements consisted of 1’s and 0’s, which indicated satisfying or dissatisfying the
requirements by test cases respectively. The algorithm got the number of test cases that resulted
from multiplying the test case-requirement matrix by its transposed matrix. Each diagonal element
of this matrix showed the number of unmarked requirements covered by the corresponding test
case and each non-diagonal element shows the number of requirements coverage in which test
cases overlap. Repeatedly, it selected a test case by adding the test case with the maximum
diagonal value into a list, and the test case with the minimal values into another list. It then
selected a test case from the intersection of both lists; redundant test cases were removed. .

Analysis: The algorithm was measured using the percentage of suite size reduction and the
percentage of fault detection loss metrics. Experiments were conducted on real test suites
“Siemens suite” and “The Space program”. However, Siemens programs were limited and their
faults were well known.

One year later, Chang-ai Sun [15] introduced another test suite reduction method for conservative
regression testing. The algorithm constructed test constraints for each previously discovered bug in
a Boolean formula which specified the conditions that can guarantee the detection of the targeted
bug in a program under test. The algorithm employed program analysis techniques including
slicing, chopping and path conditions. Program slicing decomposes programs by analyzing the
data flow and control flow [16], and chopping filters slices to know how statements influence each
other. Whereas path conditions give necessary conditions under which a transitive dependence

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

74

between the source and target node exists [17] to obtain trigger conditions and propagation-
conditions of the test constraint. The test constraints were merged for the common test constraints
between two bugs.

Analysis: The proposed method can be used to guide the generation of high-quality test cases for
regression testing. However, no direct metrics were mentioned in the evaluation of this technique
for reduction.

3.3 Test Cases Prioritization Techniques

Test cases prioritization is a vital regression testing approach. It sorts existing test cases for
regression testing according to certain parameters to attain performance goal.

Adam M. Smith, et al [9], extended algorithms of selection and prioritization to greedily
reduce and prioritize the tests by using both test cost (e.g., execution time) and the ratio of code
coverage to test cost. They conducted an experimental analysis on eight case study applications to
evaluate the effectiveness of extending the following four techniques: Harrold Gupta Soa, Delayed
greedy, Traditional greedy and optimal greedy algorithm.

Harrold Gupta Soa (HGS) technique selected a representative set of test cases from a test suite
that provided the same coverage as the entire test suite by identifying, and then eliminating the
redundant and obsolete test cases in the test suite [18]. The Delayed Greedy (DGR) technique
represented a greedy heuristic algorithm. It used coverage information to make intelligent
decisions “greedy choices” to select a minimal subset of a test suite T by iteratively exploiting
implications among the coverage requirements and the implications among the test cases and the
implications among the coverage requirements to cover all the requirements by this test suite T
[19]. In 2007 [20] they presented GRD Traditional Greedy, a standard greedy algorithm that
iteratively picked a test case that covers maximum unsatisfied branches of the program until all
branches were satisfied. In another study, Optimal Greedy (2OPT) algorithm was introduced as a
greedy algorithm that performed all-pairs comparisons. It updated coverage information for each
unselected test case following the choice of each pair of test cases. These four extended techniques
(Harrold Gupta Soa, Delayed greedy, Traditional greedy and Optimal greedy) were evaluated
using RFFT (Reduction Factor for Time), RFFS (Reduction Factor for Size), and CE (Coverage
Effectiveness).

Analysis: Adam M. Smith’s study extended and evaluated already existing algorithms for
regression testing but was not tested with large case study applications.

Hyunsook Do, et al [8], introduced a series of experiments conducted to evaluate the effect of time
constraints on the costs and benefits of prioritization techniques. They relied on an economic
model EVOMO (EVOlution-aware economic Model for regression testing). It is currently the only
existing economic model capable of capturing the foregoing factors comprehensively.

Analysis: This paper showed that time constraints can certainly play a significant role in
determining both the cost-effectiveness of prioritization techniques, and the relative cost-benefit
tradeoffs among techniques.

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

75

Shin Yoo et al [21], transferred techniques from the regression test literature into industrial
practice. They adopted a multi-objective search-based test suite selection technique based on
Pareto efficient multi-objective [22] within Google’s test environment. The Pareto efficient took
multiple objectives such as code coverage, past fault-detection history and execution cost as test
selection criteria for prioritization. It seeks test suites that maximize coverage and historical fault
revelation, while minimizing execution time.

Analysis: This work highlighted that the optimization of coverage and time alone was insufficient.
Additionally, it should use the historical fault revelation in prioritization. It also emphasized the
importance of including industry in the research. However, it was applied only on one test
environment of Google.

Thillaikarasi Muthusamy et al [23] introduced a new technique for test case prioritization. Their
technique assigned six factors for each test case during test design and analysis phases.

The factors assigned to each test case were:

1. Customer-Allotted Priority (CP): which measures the implication of a requisite to the
customer, the values of each need were assigned by the customers.

2. Code Implementation Complexity (IC): which is an individual measure of the complexity
expected by the development team in implementing the necessity.

3. Changes in requirement (RC): which is a degree assigned by the developer for indicating the
number of times a requirement is changed in the development cycle with respect to its origin
date.

4. Fault Impact of Requirements (FI): It distinguishes the requirement that had customer reported
failures, the number of in-house failures and field failures determine the fault impact of
requirements.

5. Completeness (CT): It indicates what is needed as per the requirement for a function to be
executed, the rate of success, the limitations to be followed for the function is to be executed
and any limitation which manipulates the expected solution for example the boundary
constraints.

6. Traceability (TR): It defines whether a requirement is properly tested is cumbersome for
evaluators. This c value is determined after assessing individual requirement for the concerned
traceability and the standard of software can be improved by opting the traceability of the
requirement into consideration is chosen for subsequent usage

 Weighted prioritization value (WPV) was then computed for each test case,

WPV=Value of factor * Weight of Factor… (14)

and then the Weighted Priority (WP) was computed. Prioritization was based on WPV and WP of
every test case in the test suite. The technique was evaluated using APFD metric.

Analysis: This technique proposed a new practical set of weight factors used in the test case
prioritization process. However, it depended on the manual input of all the factors, which may
encounter human error and subjective weighting.

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

76

4. Introducing Data Mining to Regression Testing

There has been an explosion in the use of data mining techniques in the exploration and analysis of
large quantities of data in order to discover meaningful patterns and rules. Accordingly, data mining
algorithms have been potentially used to solve automation software testing problems with large data. In
this section, we discuss the use of data mining techniques to design a minimal set of regression tests or
to prioritize the test sets.

Shin Yoo et al [24], introduced a clustering technique in which test cases were clustered based on their
similarity of the features tested using the runtime behavior. However, the prioritization between
clusters was done using human judgment. The proposed technique represented the execution of each
test case by a binary string. Each bit represented a statement in the code. If the test case executed, then
this statement’s corresponding digit is 1, else it is 0. An agglomerative hierarchical clustering technique
was then applied to group the test cases with closer distances using Hamming distance to calculate the
distance between test cases binary strings. Prioritization of test cases in the same cluster was done
using traditional coverage-based greedy algorithm. However the prioritization of the clusters itself was
done using the human tester intervention using APFD metric.

Analysis In this approach, the clustering was applied to reduce the number of pair-wise comparisons
making it scalable. However, human involvement was required in the prioritization of the clusters itself
which caused human input erroneous and subjective results.

Ryan Carlson et al, [25] conducted empirical studies using industrial software product as Microsoft
Dynamics X. They implemented a new prioritization technique with a clustering approach using code
coverage, code complexity and history data of real faults. That technique used agglomerative hierarchal
clustering method, which merged test cases with closer code coverage similarity. The distance between
the cluster and any of the remaining test cases was determined by averaging the distance between each
of the elements of the cluster and the test case. A prioritization technique was then applied using the
code coverage information, code complexity matrix, the history data of faults and a combined
technique using the arithmetic mean of code complexity and fault detection ratio. The test cases were
re-ordered in an order that put the highest average value earlier.

Analysis: The technique was evaluated using AFDP metric and was applied on a massive data in real
software repositories. However, it was applied only on financial subsystems for Microsoft dynamics
Ax programs, where it might not apply on all dynamics Ax programs or other company’s products.

Songyu Chen et al [3], introduced a semi-supervised learning technique for regression test selection.
This approach introduced a semi-supervised clustering method named semi-supervised K-means
(SSKM), which combined SSDR and K-means. SSDR was used as a pre-process of the original data
with limited constraint information before K-means. The SSKM was used to group tests into clusters.
A popular sampling strategy, namely adaptive sampling strategy, was used to select data from clusters
and was evaluated using F-measure.

Analysis : It was the first time to apply the semi-supervised clustering in test selection, or software
testing. However, the proposed technique used only a small set of subject programs, modified versions
and test sets. In practice, the situations can be challenging for large-scale systems.

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

77

 A year later, Arvind Kumar Upadhyay et al [26], introduced another clustering-based prioritization
technique, where test suites were scheduled using clusters. The proposed technique applied the
clustering-based prioritization on a quadratic equation problem. It represented the equation using flow
graph and then calculated the cyclomatic complexity, which was used to indicate the complexity of a
program by directly measuring the number of linearly independent paths through a program's source
code. Cycolmatic complexity was used to get the number of independent paths. K-means algorithm
was used to group test cases of similar paths in the same cluster, and then prioritization of clusters was
done using dendogram method, which is a tree-structured graphical representation of the resulting
hierarchy.

Analysis : The technique was evaluated using APFD metric, where it minimized the APFD measure
than normal prioritization. However, it targeted very simple test suites and was not applied on complex,
or large-scale test suits.

S.Raju et al [10] introduced another cluster-based prioritization technique using certain factors entered
by user. The proposed technique received from the user the following values for each test case:

 Rate of Fault detection (RF): The average number of faults for each requirement.
 Requirements Volatility (RV): The number of times a requirement has changed.
 Fault Impact (FI): The fault severity.
 Implementation Complexity (IC): How complex is the implementation of the requirement.

Agglomerative hierarchal clustering was used to group similar test cases in the same cluster. The
Prioritization Of Requirements Test (PORT) algorithm was used to prioritize traceability between
requirements and test cases, where PORT is a value-driven approach to system-level test cases
prioritization, The technique calculated the Prioritization Factor Value (PFV), which measured the
importance of testing a requirement by multiplying the factor value for each requirement with the
factor weight. Furthermore, the Weighted Prioritized factor (WP) was calculated for each test case
from the PFV of the associated requirements. The test cases were ordered for execution based on the
descending order of WP values.

Analysis : This algorithm was evaluated using APFD and PTR metrics, where it effectively prioritized
the test cases. However, it was applied on one bank application only, besides that, manual input of the
factors was required and no prioritization was applied outside a cluster.

Junaid Arafeen et al [27] presented a test case prioritization technique using requirements-based
clustering. This technique used text mining in order to determine the clusters of requirements. It used
k-means algorithm to cluster similar requirements after using term extraction and creating term-
document matrix. After the clustering were formed, the test cases clusters were formed by mapping
each test case to its relevant requirements. Prioritization between test cases in the same cluster was
done using the source code information, whereas prioritization between clusters was done based on the
source code information along with prioritized requests from the client producing re-ordered test cases.

Analysis : The technique was evaluated using AFDP. The use of requirements-based clustering
approach, which incorporated traditional code analysis information, improved the effectiveness of test
case prioritization techniques. However, no analysis was explained for choosing the different metrics
for code complexity and changing the number of clusters in the algorithm. In addition, it was applied

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

78

on small and medium size programs. Accordingly, results from their study cannot be interpreted in the
context of industrial applications.

5. Regression testing tools in market

With the increasing need for regression testing tools in the market, many applications have
recently emerged to automate the regression testing process. Most of the tools work with the re-test all
approach by re-running all the test cases in the regression phase. In addition, there are no specific
illustrations mentioned for the scalability of these tools in dealing with large-scale systems. In the
below table, we present the most famous regression testing automation tools in market along with their
advantages and disadvantages.

Table 1 : Regression testing tools

Tool Name Description Advantages Disadvantages

Test Complete 1

A test platform for easily
constructing, maintaining, and
executing automated tests for
desktop, web, mobile, and client-
server software applications. It
has many features needed to make
regression testing fully automated
by re-running automated
functional tests

An open-source tool
that performs
functional tests and
it is also possible to
develop tests with
scripts.

No algorithm used
for selecting or
prioritizing test
cases, only re-
running all the test
cases for
regression is used.

Rational Functional Tester2

A java tool used to automate the
test cases of software
applications. This is primarily
used for automating regression
test cases.

Provides testers
with automated
capabilities for data-
driven and keyword
testing.

No algorithm used
for selecting or
prioritizing test
cases, only re-
running all the test
cases for
regression is used.

Silk Test3

An automated testing tool for
regression testing, supporting
multiple technologies like AJAX,
Web 2.0, .NET and JAVA, Silk
Test boosts productivity

It contains all the
source script files
and supports object
oriented
implementation.

It uses the
proprietary 4Test
language for
automation
scripting which is
not familiar and
uses the re-test all
approach

Junit 4

A unit-testing framework for the
Java programming language. It is
a simple framework to write
repeatable tests

It is an open-source
framework,
providing graphical
user interface to

It was originally
intended and still
primarily used for
“unit testing” —

1http://smartbear.com/products/testcomplete/

2 http://www-03.ibm.com/software/products/en/functional

3 http://www.borland.com/products/silktest
4http://junit.org

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

79

write and test source
code quickly and
easily.

that is, white box
testing of
individual
components
outside the context
of the whole
system, not
regression testing.

Q Engine 5

An automated testing platform to
test the functionality and
performance of web applications
and web services in Windows and
Linux platforms. It provides a
web-based interface and an
integrated test management
solution that enables test
automation engineers to schedule
test suites for unattended test
execution, and run test suites from
command line mode using
batch/shell files for regression
testing

Tool is developed
using Java, which
facilitates
portability and
multiple platform
support.

Used only for web
applications and
web services and
uses the re-test all
approach.

Mercury Win Runner 6

A tool for enterprise-wide
functional and regression testing.
Fully integrated with the HP
Business Process Testing
Solution. It captures, verifies, and
replays user interactions
automatically.

It implemented a
proprietary Test
Script Language
(TSL) that allowed
customization and
parameterization of
user input.

It is no longer
supported by HP,
thus might not be a
good choice of a
tool for someone
starting out in
implementing an
automated testing
structure

Scout [28]

A tool developed by Microsoft
which codified a greedy algorithm
for selecting tests, vindicating the
minimization approach

It uses an algorithm
for selecting test
cases, which
significantly reduce
the number of
regression tests
being re-run.

Not widely used in
market.

Test Impact Analysis7

It is a feature in Visual Studio
2010 (Premium and Ultimate
editions) that analyzes the
changes made to the code base. It
also determines what unit tests
may be affected, or "impacted" by
the changes of the code. The

It not re-runs all the
test cases in
regression, but only
that affects the code
changes.

Native code is not
yet supported, it
does not select a
minimal set of
tests to re-run, but
instead, It selects
an aggregate set,

5 https://www.manageengine.com/products/qengine
6 http://www.starbase.co.uk/what-we-sell/hp/functional-testing/winrunner.html
7 http://visualstudiomagazine.com/articles/2011/02/10/test-impact-analysis.aspx

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

80

developer has the option to run
only the impacted tests, in effect
testing just the code changes that
were made, or running all the unit
tests in the solution to perform
full regression testing

which includes all
tests traversing the
modified code.

QTP8

An automated software designed
to automate functional and
regression test. It compares the
actual and expected result and
reports the results in the execution
summary.

Developing
automated tests
using VBScript does
not require a highly
skilled coder, Easy
to use. It can also be
used for mobile
application testing.

Works in
Windows
operating system
only, not all
versions of
browsers are
supported. The
licensing cost is
very high, and the
execution time is
relatively higher as
it puts load on
CPU & RAM.

Watir9

Uses the family of Ruby libraries
for automating web browsers. It
allows the user to write test cases
that are easy to read and maintain

An open source
supports all major
browsers. Open-
source Framework.

Test scripts are
written in the Ruby
programming
language, which is
unfamiliar, needs
skilled
programmer, and
uses the re-test all
approach.

TOSCA10

Used for automated execution of
functional and regression
software testing. In addition to
test automation functions,
TOSCA includes integrated test
management, a graphical user
interface (GUI), a command line
interface (CLI) and an application
programming interface (API).

Very rich
automation/test
management
framework

Consider the
coding needed to
integrate with your
application

6. Regression Testing Challenges and Comparative Analysis.

Although regression testing has taken huge efforts in research, there are still many challenges and
gaps in adopting regression testing methodologies. Some of the challenges were that no sufficient

8 http://www.quicklearnqtp.com/2009/07/regression-testing-framework-in-qtp.html
9 http://www.watir.com
10 http://www.qualitytesting.info/page/tosca-testsuite

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

81

number of experiments and trials are considered in many experiments, no data sets are created
containing information about the efficiency and effectiveness of the studies. The testing coverage
report and testing results of the presented algorithms are not mentioned in details in the papers [29] In
addition, there is a challenge related to the lack of tool support that helps to select, remove, and re-
order the tests within real-life application. Some other researches mentioned the challenge of scalability
issue in reality, the weakness of most approaches that they did not scale well or were not studied with
large data sets. Others did not show a worthy performance with large sets.

With continuous regression runs, test suites become large; the entire regression test suite cannot be
executed due to time and budget constraints [30]. Minimizing test suite with maximum test coverage
achievement remains a challenge. The above challenges and gap between the research and practice
results in the limitation of the industrial adoption of the current regression testing techniques.

7. Proposed Approach
The purpose of our proposed model is to provide a fully automated regression-testing tool that takes
the full test cases set, the traceability matrix showing relations between the test cases and other
components like code reference and the list of the code modules that were changed during different
phases of the project, and promotes to the user certain test cases to be used for regression

Figure 4 : Our Proposed Model

7.1 Clustering

In order to support scalability, all test cases are clustered based on their code coverage similarity
[31]. The test cases covering similar code modules are in the same cluster. Each test case is
defined by a string of 0s and 1s, where each bit in the string represents a code module; 1 means
that this module is covered by this test case and 0 means this module is not covered by this test
case.
Distance between the defined strings of test cases is calculated using the Hamming distance [32].
Using clustering technique, close test cases (with minimum hamming distance difference) are
grouped in the same cluster, indicating that they test similar modules.

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

82

7.2 Prioritization

Prioritization of clusters is then applied based on the code coverage and the fault detection history.
The code coverage of test cases in the same cluster represents the number of modules covered by
all the test cases in the cluster. Whereas, the fault history for the test cases in each cluster
represents how many test cases in each cluster have failed before. Each cluster is ranked based on
the above numbers. The cluster containing test cases with the maximum code coverage and
maximum number of failed test cases takes the highest rank, and thus it is given the highest
priority.

7.3 Selection

Eventually, selection of test cases from each cluster is done to run the regression testing instead of
the whole list. In the selection phase, the list of modules changed are used combined with the
priority list of clusters. For each cluster, the priority of the cluster and the number of changed
modules covered by the test cases in the cluster are checked. Based on the calculation above, a
percentage of the test cases are selected from each cluster according to a certain threshold, where
this threshold is determined through a learning process to avoid human errors and subjective input.

8. Conclusion
In this paper, an intensive study has been presented on the various regression test selection, reduction
and prioritization techniques. Advantages and limitations of the proposed techniques were also
discussed, An emphasize to the use of data mining techniques into test cases selection and prioritization
of regression testing has also been investigated to address scalability-related issues. In addition, we
elaborated the parameters of evaluation used in the different techniques, besides the tools used for
regression testing in the market. Along our research, we have analyzed the challenges and gaps that are
still found in the presented techniques of regression testing. Finally, a new approach for regression
testing has been proposed to tackle large-scale systems limitations. This approach combines clustering
along with both prioritization and selection techniques with no manual input required from the user,
taking into consideration the fault history and code coverage of test cases. This helps to achieve more
efficient regression testing in terms of cost and avoid human erroneous.

References

[1] Trivedi, S. H., Software Testing Techniques, International Journal of Advanced Research in

Computer Science and Software Engineering ,vol. 2 no.10, pp.433–439,2012
[2] Bharati, C., & Verma, Analysis of Different Regression Testing Approaches. International Journal

of Advanced Research in Computer and Communication Engineering,vol. 2 no.5, 2150–2155,2013
[3] Chen, S., Chen, Z., Zhao, Z., Xu, B., & Feng, Y, Using semi-supervised clustering to improve

regression test selection techniques. Fourth IEEE International Conference on Software Testing,
Verification and Validation , pp. 1–10,2011

[4] Ur, S., Khan, R., Lee, S., Parizi, R. M., & Elahi, M., An Analysis of the Code Coverage-based
Greedy Algorithms for Test Suite Reduction, The Second International Conference on Informatics
Engineering & Information Science (ICIEIS2013), pp.370–377,2-13

[5] Kichigin, D. Test Suite Reduction for Regression Testing of Simple Interactions between Two
Software Modules, Perspectives of Systems Informatics ,pp. 107–123,2010

[6] Parsa, S., & Khalilian, A., On the Optimization Approach towards Test Suite Minimization.
International Journal of Software Engineering and Its Applications,vol.4 ,no. 1, pp.15–28,2010

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

83

[7] Yoo, S., & Harman, M, .Regression Testing Minimisation, Selection and Prioritisation - A Survey,
2009,Software Testing Verification and Reliability, 22(2) , pp. 67 - 120, 2012.

[8] Do, H. D. H., Mirarab, S., Tahvildari, L., & Rothermel, G, The Effects of Time Constraints on
Test Case Prioritization: A Series of Controlled Experiments. IEEE Transactions on Software
Engineering, vol. 36, no.5,2010

[9] Smith, A. M., & Kapfhammer, G. M,An empirical study of incorporating cost into test suite
reduction and prioritization, Proceedings of the 2009 ACM Symposium on Applied Computing -
SAC ’09, 461,2009

[10] S. Raju and G.V. Uma , An Efficient Method to Achieve Effective Test Case Prioritization in
Regression Testing using Prioritization Factors . Asian Journal of Information Technology,vol. 11:
pp. 169-180,2012

[11] Biswas, S., Mall, R., Satpathy, M., & Sukumaran, S., A model-based regression test selection
approach for embedded applications. ACM SIGSOFT Software Engineering Notes, vol. 34 no. 4,
pp. 1,2009

[12] Farooq, Q., Iqbal, M. Z. Z., Malik, Z. I., & Riebisch, M, A Model-Based Regression Testing
Approach for Evolving Software Systems with Flexible Tool Support. 17th IEEE International
Conference and Workshops on Engineering of Computer Based Systems, pp.41–49,2010

[13] Malhotra, R., Kaur, A., & Singh, Y. ,A Regression Test Selection and Prioritization Technique,
Journal of Information Processing Systems, vol 6,no 2,2010

[14] Panigrahi, C. R., & Mall, R. , A Hybrid Regression Test Selection Technique for Object-Oriented
Programs. International Journal of Software Engineering and Its Applications, 2012, vol. 6,no.4) ,
pp17–34.

[15] Sun, C., A Constraint-based Test Suite Reduction Method for Conservative Regression Testing.
Journal of Software, vol. 6 , no.2, pp.314–321,2011.

[16] Weiser, M. , Program Slicing, IEEE Transactions on Software Engineering, SE-, vol.10, no.4,
pp.352–357,1984

[17] Krinke, J. Slicing , Chopping , and Path Conditions with Barriers, Software Quality Control ,vol.
12, no.(4) ,Pages 339 - 360,2004

[18] Clemson, M., Gupta, R., Jean, M., & Unwersity,A methodology for Controlling the Size of a test
suite. ACM TransactIons on Software Engineering and Methodology, vol2 , no. 3, pp.270–
285,1993

[19] Tallam, S., & Gupta, A concept analysis inspired greedy algorithm for test suite minimization ,The
6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering - PASTE ’05, 35, 2005

[20] Li, Z., Harman, M., & Hierons, R. M., Search Algorithms for Regression Test Case Prioritisation,
Software Engineering, IEEE Transactions on Software Engineering ,vol. 33, no.4, PP 225 - 237, 2007

[21] Nilsson, R., & Harman, M., Faster Fault Finding at Google Using Multi Objective Regression Test
Optimisation,2011

[22] Yoo, S., & Harman, M., Pareto Efficient Multi-Objective Test Case Selection, ISSTA ’07,
London, U.K,2007

[23] Muthusamy, T., A New Effective Test Case Prioritization for Regression Testing based on
Prioritization Algorithm. International Journal of Applied Information Systems, vol. 6, no.7 ,
pp.21-26, 2014

[24] Yoo, S., Harman, M., Tonella, P., & Susi, A. ,Clustering Test Cases to Achieve Effective &
Scalable Prioritisation Incorporating Expert Knowledge, ISSTA'09 Proceedings of the eighteenth
international symposium on Software testing and analysis, pp. 201-212,2009

[25] Carlson, R. , Hyunsook Do ; Denton, A. , A Clustering Approach to improving test case
prioritization.27th IEEE International Conference on Software Maintenance, pp 382-391, 2011

International Journal of Soft Computing and Software Engineering (JSCSE)
Vol.5, No.4, 2015

Published online: April 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n4.1

84

[26] Upadhyay, A. K., & Misra, A. K. , Prioritizing Test Suites Using Clustering Approach in Software
Testing, International Journal of Soft Computing and Engineering (IJSCE) no. 4, pp. 222–
226,2012

[27] Arafeen, M. J., & Do, H, Test case prioritization using requirements-based clustering. Proceedings
- IEEE 6th International Conference on Software Testing, Verification and Validation, ICST ,
pp.312–321,2013

[28] Hartmann, J., 30 Years of Regression Testing : Past, Present and Future. PNSQC 2012
Proceedings, pp.1–8,2012

[29] Kapfhammer, G. M., Empirically Evaluating Regression Testing Techniques: Challenges,
Solutions, and a Potential Way Forward, IEEE Fourth International Conference on Software
Testing, Verification and Validation Workshops, pp.99–102,2011

[30] Engström, E., Runeson, P., & Skoglund, M., A systematic review on regression test selection
techniques. Information and Software Technology, vol. 52, no.1, pp.14–30, 2010

[31] Berkhin, P. Survey of clustering data mining techniques.Accrue Software, Inc 2002.
[32] He, M. X., Petoukhov, S. V., & Ricci, P. E. Genetic code, Hamming distance and stochastic

matrices. Bulletin of mathematical biology,Vol 66,no.5,pp. 1405-1421, 2004

