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Abstract. In this paper, a new and powerful method for Blind Source Separation (BSS) for single 

channel mixtures is presented. This method is based on non-Gaussian nonnegative matrix 

factorization (NG-NMF) in which modified Hilbert spectrum is employed. In the proposed 

algorithm, the Adaptive EEMD (AEEMD) is introduced to transfer the signal to the Enhancement 

Intrinsic Mode Functions (EIMF). The Hilbert spectrums of EIMFs are used as artificial 

observations.  

In order to make estimated spectrum of EIMF of sources using NMF, the maximization of Non-

Gaussianity is used. Then, spectra of estimated oscillation modes are transferred to the time domain 

by the inverse Hilbert spectrum (IHS). In order to cluster of these oscillation modes, k-means 

clustering algorithm based on KLD (Kullback Leibler Divergence) is used. The simulation results 

indicate that the proposed algorithm performs the separation of speech and interfering sounds. 

from a single-channel mixture, successfully.  
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1. Introduction 
Blind source separation methods are divided into two different categories: (i) single–channel source 

separation which is recorded only by one sensor and (ii) multi-channel source separation which is 

recorded by several sensors in various positions. Methods based on Single-Channel Blind Source 

Separation (SCBSS) are more practical than multi-channel methods in the real word applications. In some 

applications, we have to perform source superstation only one observation due to some constraints for 

instance show-through or bleed-through.  However, SCBSS is one of the challenging issues in the signal-

processing field because of finding two or some source signals from only one mixture. It can include 

widespread applications in audio processing [1], wireless communications, biomedical signal 

processing[2], [3], radar signal processing, and image processing [4] and so on [5].  

Different methods are available to separating the signals from a single mixture. In general, SCSS can be 

divided into two main groups of non-blind and blind methods. The method which is based on additional 

information and priori distribution of sources are called non-blind single channel source separation. 

However, another group that is not based on additional information of sources, and it only relies on partial 

assumptions is so-called to blind single channel source separation (SCBSS). 
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The conventional methods of SCBSS are Singular Spectrum Analysis (SSA) [6], Hilbert Huang 

spectrum based methods [7], [8] and Nonnegative Matrix Factorization (NMF) based methods [9]. 

These methods are used in the time, frequency or time-frequency domain. In this method, basic 

assumptions are considered in order to separation of mixture of sources. 

In the SSA based methods, time series of the single-channel signal is converted to the trajectory 

matrix. Then using the Singular Value Decomposition (SVD) method, trajectory matrix is divided into 

some sub-group matrixes. In the last stage, these matrixes are returned into the vectors with special 

assumption. Problems of this method, existence of parameters that are selected regulatory and there are 

restrictions on the type of source signals, such as the stationary and independence of sources [6]. 

Hilbert Huang spectrum directly [7] or indirectly [8] is used to separate sources. This method is based 

on the use of Empirical Mode Decomposition (EMD). EMD decomposes the signal into oscillation modes 

called Instantaneous Mode Function (IMF). Each IMF satisfies two conditions, the number of zero 

crossing points has to be equal to the number of extrema point and  the mean value of upper envelop and 

lower envelop is close to zero at any point. Using transfer of IMFs into the time-frequency domain, the 

Hilbert Huang spectrum is obtained. 

However, EMD method is very sensitive to noise and type of interpolation function. Therefore, 

Different interpolation functions give different results. This method requires to signals that has the 

oscillation mode and the amplitude of signals should not change at any moment strongly. Furthermore, 

this method has mode mixing problem in the signals with intermittency frequency [7]. 

To solve these problems, the method based on adding several Gaussian noises to the signal and 

decomposes the signal to the oscillating mode and the averaging of  IMF are presented. This method 

called Ensemble Empirical Mode Decomposition (EEMD) that is improved version of EMD method [10]. 

However, to calculate the number of added noise and its amplitude are not introduced any solution. Time 

consumed of EEMD is much longer than the EMD. So that implementation of it as a decomposition 

algorithm is not impossible. 

Among non-blind and blind methods, NMF algorithm is the simplest method to separate two or more 

sources that Paatero introduces it in 1994 [11]. The most important issue in relation to NMF is the 

calculation of non-negative matrixes W and H, which are the factorizations of the matrix or signal X. 

Unknown matrices W and H have to be calculated so that the costs function of the distance X, and WH is 

minimized. How to minimize the cost function is the main discussion in scientific literature and is still one 

of the open issues in this field.  

However, the total effort that can be done in this field has been classified as follow: 

A group of algorithms tries to change or improve the cost function. After introducing the standard NMF 

algorithm by Lee and Seung [12], many scientific papers are published in the analysis area, development 

and applications of NMF algorithms in various fields of science, engineering and biomedicine. This group 

of NMF algorithms is presented by several authors with different mathematical formulas for the time, 

frequency and time - frequency domain. 

Another group of algorithms is based to search of appropriate methods to initialize matrixes 𝑊 and 𝐻 to 

speed up to convergence of cost function [13].  

However, any of these NMF methods is not presented the uniqueness 𝑊 and 𝐻 which be the same 

latent source in mixture. 

In order to find a solution to the mentioned problems in the deferent SCBSS methods, we proposed the 

algorithm that is based on a modified Hilbert spectrum and non-Gaussian NMF. The key component of 

the proposed algorithm is to decompose the non-stationary signals into the total of pseudo-stationary 

signals in time–frequency domain by modified Hilbert's spectrum and maximize the non-Gaussianity of 

the obtained spectrum in NMF method. 

Because of Fourier-based time-frequency, representation includes a remarkable amount of cross-

spectral terms due to the harmonic assumption and the window overlapping between successive time 

frames. However, the Hilbert spectrum does not include a noticeable amount of cross spectral energy, and 

it can represent the instantaneous spectra of any time series without employing any window. Therefore, 

our method is based on changing non-stationary single-channel signal into pseudo-stationary multichannel 

signals, using Hilbert spectrum.  
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The EMD based methods [7], [8] has several disadvantages, including dependency of interpolation 

type on sifting process, mode mixing, not specified the number of IMFs functions, sensitivity to Non-

uniform noise, not unique oscillation modes arising from a signal. 

In the proposed algorithm, Adaptive EEMD (AEEMD) is introduced to transfer the signal to the 

Enhancement Intrinsic Mode Functions (EIMF). These EIMFs have the highest correlation to observation 

and the lowest correlation to each other. In fact, using these EIMFs, instead of the simple IMFs, decreases 

the error detection of original sources in BSS applications. In contrast to EMD [7], AEEMD has fewer 

numbers of spurts; and has lower sensitivity to type of interpolation function, and it properly solves the 

problem of mode mixing in signals with intermittence frequency. In AEEMD, an adaptive process is also 

selected in order to decrease the time computation of the algorithm EEMD [10]. 

In this paper, a novel framework for separation of sources from modified Hilbert spectrum based on 

Non-Gaussian Nonnegative Matrix Factorization (NG-NMF) is proposed. In the proposed separation 

method, the NG-NMF relies on maximization of non-Gaussianity of each factors W and H.   

Contrary to conventional methods based on NMF such as NMF2D [14], SNMF2D [15], and so on, that 

only under certain conditions such as different frequency of sources or sparseness are efficient; our 

proposed technique separates speech sources and interfering sounds from them mixture only using of 

independency of EIMFs Hilbert spectrum.   

The rest of paper is organized as follows: In section II, a brief background on Hilbert spectrum and 

NMF methods are presented. In section III the main idea of our SCBSS algorithm is described. In section 

IV the results of a computer simulation and comparison are shown. Section V and VI are the conclusion 

and the references, respectively. 

 

2. Background 
Since concepts of Hilbert spectrum and Nonnegative Matrix Factorization (NMF) are the bases of 

our proposed algorithm, brief descriptions of them are presented in subsections A and B, respectively.  

 

2.1. Hilbert spectrum 
Hilbert Spectrum (HS) represents the distribution of the signal energy as a function of time and 

frequency [3], [5]. To construct HS, all Intrinsic Mode Functions (IMF) are calculated using EMD 

method. The relationship between IMFs and original signal is as Eq. (1). 

 

 𝑥(𝑡) = ∑ 𝐶𝑖(𝑡) + 𝑟𝑁(𝑡)𝑀
𝑖=1                                 (1) 

 

Where 𝑀 is number of oscillation modes, 𝐶𝑖 is 𝑖𝑡ℎ IMF and 𝑟𝑁 is last remaining that is a tone signal.  

Instantaneous Frequency (IF) represents the frequency of a signal at any time instance and is defined as 

the rate of phase changes at that instant, the instantaneous phase is stated in Eq.(2). 

𝜃𝑖(𝑡) = arctan (
ℏ[𝑐𝑖(𝑡)]

𝑐𝑖(𝑡)
)  , 𝑖 = 1, … , 𝑀                                                                          (2) 

Where  ℏ[. ]  indicates Hilbert transform of signals. The amplitude of IMFs in the each time is 

defined as Eq. (3). 

 

𝑎𝑖(𝑡) = [𝑐𝑖
2(𝑡) + (ℏ[𝑐𝑖(𝑡)])2]

1

2     , 𝑖 = 1, … , 𝑀                                                               (3) 

 

Instantaneous frequency of a signal is computed as Eq. (4). 

 

  𝜔 =
𝑑𝜃̃(𝑡)

𝑑𝑡
                                                                                (4) 
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In which 𝜃̃ is the unwrapped of instantaneous phase. 

After calculating the instantaneous frequency and amplitude of IMFs, the Hilbert spectrum of signal in 

each time (𝑡 = 1, … , 𝑁) and frequency bin (𝑙 = 1, … , 𝐵) is obtained as Eq. (5). 

 

𝑋(𝑙, 𝑡) = ∑ 𝑎𝑚(𝑡)𝛾𝑚
𝑙 (𝑡)  ,𝑀

𝑚=1                                                                                                    (5) 

 

The coefficient  𝛾𝑚
𝑙  is equal to 1 if 𝑚𝑡ℎ IMF is within the lth band, otherwise it is 0. Therefore, the 

Hilbert spectrum is defined as the weighted sum of the amplitudes of all oscillation modes. 

 

 

2.1. Nonnegative matrix factorization 
Nonnegative Matrix Factorization (NMF) is a method which is used for decompose a nonnegative 

matrix X into two nonnegative factors W and H [8].  

𝑋+ ≈ 𝑊+𝐻+                                                                 (6) 

Where 𝑋 =  [𝑥𝑏𝑛]  is the 𝐵 × 𝑁 spectrum matrix, 𝑊+  =  [𝑤𝑙𝑝]𝜖ℝ𝐵×𝑃  and 𝐻+  = [ℎ𝑝𝑡]𝜖ℝ𝑃×𝑁 are base 

matrix and gain matrix respectively. 𝑃 parameter is chosen so that the following inequality is kept: 

(𝐵 + 𝑁) × 𝑃 < 𝐵 × 𝑁                                         (7) 

In the blind speech separation, X can represent the time-frequency of observation signal x. Therefore, 

the number of rows and columns of the matrix X is equal to number of frequency bins and the length of 

time-domain signal x, respectively. In the NMF algorithm, we’re interested to estimate two factors W and 

H so that its product has a minimum distance from the X matrix. There are conventional cost functions to 

minimize this distance. It is based on Euclidean distance or least squares, Eq. (8). 

 

𝐽𝐿𝑠 = 𝐷𝐿𝑆(𝑋; 𝑊+𝐻+) =
1

2
‖𝑋 − 𝑊+𝐻+‖2

2                                                                                   (8) 

where ‖𝑋 − 𝑊+𝐻+‖2
2 is the Euclidean distance between X and WH product. Since any matrices, W and H 

can be existed to minimize the cost function. So, several constraints should be introduced into cost 

function based on source characters. Constraints are introduced so that the matrices W and H are uniquely 

determined. The cost function is developed by the constraints as follows: 

 

𝐽 = 𝐷(𝑋; 𝑊+𝐻+) = 𝐷𝐿𝑆(𝑋; 𝑊+𝐻+) + 𝛼𝐹(𝑋; 𝑊+𝐻+)                                                                                  (9) 

where 𝛼 is the regularization parameter and F is the added constraint function. 

In this paper, we introduce a constraint into NMF based on independence of spectrum EIMFs of sources 

signals through minimizing the Gaussianity each of factors. 

 

3. Proposed separation method 
Blind source separation algorithm that is presented in this paper is based on the separation of two or 

more source signals from a single mixture of them, such as extraction of independent speeches in the 

single acoustic channel in that human listeners show a remarkable ability to separation an acoustic 

mixture and attend to a target sound, even with one ear as Figure 1. 
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Figure 1. Hearing system with single channel source separation capability 

 

 Since source separation presented in this paper is performed by only one mixture of sources, this 

model, called “single-channel source separation”, is stated in Eq. (10).  

    

 𝑥(𝑡) =  ∑ 𝑎𝑗𝑠𝑗(𝑡) + 𝑛(𝑡)𝐽
𝑗=1     𝑓𝑜𝑟     𝑡 =  0,1, … , 𝑇.                                                                              (10) 

in which 𝐽 is the number of sources that are latent in observation, 𝑇 is the length of observation signal 

or any of the source signals, 𝑛 is the additive Gaussian noise signal and 𝑎𝑖 is the coefficient of 𝑖𝑡ℎ source 

in the mixture. The main technique of our proposed separation algorithm is decomposition of the single 

observation into its oscillation modes called EIMFs using Adaptive EEMD (AEEMD) and then, Hilbert 

spectra of oscillation modes were factorized into the independent frequency and time components using 

Non-Gaussian NMF (NG-NMF). Product of each frequency component in its time component gives the 

estimation of EMIF spectrum. Estimated EIMFs spectra are returned into the time domain using Inverse 

Hilbert Spectrum (IHS). These independent estimated EIMFs are classified into some groups according 

to the number of sources using KLD clustering. Signals of any groups add together, and these added 

signals are an estimation of latent sources. 

Four benefits are obtained from using the EIMFs spectra instead of the observation spectrum, as 

follows: 

 Factorizing of EIMFs spectra to the independent frequency and time components has less 

complexity than the observation spectrum. 

 Clustering of EIMFs frequency and time components is simpler than the observation spectrum. 

 Each oscillation mode has the property of pseudo-stationary. 

 Eventually, Hilbert spectra of EIMFs are the linear summation of corresponding EIMFs of 

sources. 

The proposed method consists of three steps, as follow:  

Step 1: Dividing the observation mixture into some segment with shorter length, called windowing.  

Step 2:  Decomposing each segmented signal to oscillation modes (EIMFs) using the AEEMD. 

Step 3:  Transforming EIMFs into time-frequency domain using Hilbert Spectrum (HS). 

Step 4: Obtaining estimated oscillation modes spectrum for any sources using NG-NMF. 

Step 5: Reconstructing estimated source using transforming estimated EIMFs spectrum into the time 

domain, and then clustering them into some groups according to the number of sources using KLD 

clustering.   

The core procedure of the SCBSS proposed method is shown in Figure 2. In the following 

subsections, these steps are described in details. 
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3.1. Windowing 
In this step, called windowing, the time-series of observation signal is divided into some segment 

with a shorter length than 𝑇 . It is an important process because it decreases the complexity of 

computations and increases the stationary of observation signals. 

This process is available in both fixed and variable length [6], [8]. Usually, a window with variable 

length is used to create stationary signals [6], since, in our algorithm; signals are converted into pseudo-

stationary oscillation modes, we use a fixed window to segment the observation of 𝑥(𝑡). The windowed 

observation of 𝑥(𝑡), called 𝑥𝑖(𝑡), is stated in Eq. (11). 

 

𝑥𝑖(𝑡) = [𝑥(𝑖 × 𝐿 − 𝐿 + 1), … , 𝑥(𝑖 × 𝐿)]    𝑓𝑜𝑟    𝑖 =  1, … , 𝐷                                                                                  (11) 

where 𝑖 is the index sample, and L is the length of the window. 

 

3.2. Modified Hilbert spectrum 
As mentioned in the background to obtain the Hilbert spectrum, first oscillation modes of signal has to 

be obtained using EMD. In comparison with other signal analysis methods, EMD method is only based on 

their signal and don’t need to signal parameters such as the window or the base signal. EMD acts as a 

dyadic filter bank with automatic band pass for a white noise. Therefore, the uniform Gaussian white 

noise can be separated from the original signal. However, when noise is non-uniformly combined to the 

signal or when the IMFs have the mode mixing problem, then the property of dyadic filter of EMD is 

failed. This problem not only can cause serious aliasing, but also causes unclear physical interpretations. 

Furthermore, EMD is very sensitive to type of interpolation function. Therefore, different interpolation 

functions give different results. 

In order to overcome these problems, a noise-assistant data analysis (NADA) method called Ensemble 

Empirical Mode Decomposition (EEMD) was proposed [10]. EEMD adds white noise with the arbitrary 

amplitude to the signal, several times, and then decompose noised signals into oscillation modes. In this 

method, the ensemble term indicates adding noise more than once. However, before EEMD is used, the 

amplitude of added noises and the number of ensemble noises are two parameters to be adjusted. In [10], 

the authors assume that the amplitude of the added white noise 𝑎 is fixed to 0.2 times of maximum 

amplitude of the signal.  

They also consider that the number of ensemble noises 𝑁 is greater or equal 1000 [10].  

With increasing 𝑁, execution time of EEMD algorithm will increase linearly, so that makes it almost 

impossible to decompose  

signals. On the other hand, in order to remove mode mixing problem, when the data is dominated by 

high-frequency signals, the noise amplitude hast to be smaller than 0.2; and when the data is dominated 

by low-frequency signals, the noise amplitude has to be bigger than 0.2.  

In this paper a novel method is presented to decompose observation signal into their sub-signal. The 

proposed method is called to Adaptive EEMD (AEEMD). In AEEMD, an adaptive process is selected in 

order to decrease the time computation of the algorithm and sensitivity to noise and interpolation function. 

In EEMD [10], the relationship between the number of ensembles (N), added noise amplitude (𝑎), and 

the standard deviation of error (𝛿) is stated in Eq. (11).  

𝛿 =
𝑎

√𝑁
 .                                                                                                                           (12) 

 

The aim is to decrease the standard deviation of error (𝛿), by either increasing 𝑁 or decreasing 𝑎. 

Increasing the number of ensemble 𝑁 increases the computation time of the algorithm. On the other hand, 

the amplitude of the added noise (𝑎) cannot be decreased from a threshold value. If 𝑎 goes under this 

threshold value, the extrema cannot be detected and the mode mixing problem not be solved.  

In order to find optimum values for N and, first initial values for 𝑁 and 𝑎 are considered. Then, a 

primary value for standard deviation of error is calculated, Eq. (20). The observation signal is 
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decomposed into oscillation modes using EEMD with noise amplitude 𝑎 and the number of ensemble 

noise 𝑁. The standard deviation of IMFs is then calculated using Eq. (12). 

 

 𝛿 =
1

𝑛
∑ [

1

𝑁
∑

1

𝐿

𝑁
𝑗=1 ∑ |𝑐𝑖(𝑡𝑘) − 𝑐𝑖𝑗(𝑡𝑘)|𝐿

𝑘=1 ] .𝑛
𝑖=1                    (13)                            

 

where 𝑐𝑖𝑗(. ) is the ith IMF using EEMD after j steps of noise addition, 𝑐𝑖(. ) is the mean corresponding to 

ith IMF, L is the length of data, and n is the number of IMFs using  Eq. (13). 

 

𝑛 = ⌊𝑙𝑜𝑔2
𝑁⌋ − 1   .                                                   (14)                                                                     

 

If the standard deviation obtained from Eq. (14) is smaller than the primary standard deviation of 

error, then the amplitude of noise reduces the error. The amplitude of noise is updated using Eq. (12), and 

the pervious procedures are repeated several times to obtain 𝑎 that gives the standard deviation of error 

bigger than before steps. This shows that the amplitude of noise cannot be smaller than this value. 

Therefore, if the difference of standard deviation obtained in the earlier stages is smaller than the 

threshold value (in this paper is 0.0005), the algorithm is stopped and the optimum amplitude of added 

noises a corresponding to ensemble number N is found. Otherwise ensemble number 𝑁 is updated by 

𝑁 = 2𝑁 and search for finding the optimum amplitude would continue. Therefore, repeating Eq. (12) and 

Eq. (13) form a recursive loop to converge the optimal values of 𝑁 and 𝑎, as Fig. (2).  

The number of ensemble noises of AEEMD is lower than this number in EEMD method; and accuracy 

of our algorithm is higher than EMD. We call the oscillation modes obtained from propose the method 

AEEMD to Enhancement IMF (EIMF). After applying the Hilbert transform and calculating the 

instantaneous amplitude and frequency of the oscillating modes using Eq. (3) and (4), Hilbert spectrum of 

𝑚𝑡ℎEIMF is obtained as Eq. (15). 

 

                                                               (15)                   

 

 

where the coefficient  𝛾𝑚
𝑙  is equal to 1 if 𝑚𝑡ℎ EIMF is within the lth band, otherwise it is 0. Therefore, the 

Hilbert spectrum of 𝑚𝑡ℎ  EIMF is defined as the nonnegative weighted sum of the amplitudes of all 

oscillation modes. 

 

3.3. Non-Gaussian NMF 
Now we assume the products of first and second column of the matrix 𝑊 in the first and second row 

of the matrix 𝐻 gives first and second source in Hilbert spectrum of i
th

 EIMF, respectably, as Eq. (16). 

 

  𝑿 = 𝑾𝑯 = 𝑾(: , 𝟏)𝑯(𝟏, : ) + 𝑾(: , 𝟐)𝑯(𝟐, : )  = 𝑾𝟏𝑯𝟏 + 𝑾𝟐𝑯𝟐                                                         (16) 

 

In according to the central limit theorem that the sum of two independent sources is more Gaussian 

than either of the sources, it is assumed that each of the matrices 𝑾𝟏𝑯𝟏  and 𝑾𝟐𝑯𝟐  are more non-

Gaussian than matrix 𝑿.   

Therefore, using maximization of non-gaussianity matrices 𝑊1𝐻1 and 𝑊2𝐻2, correct estimation of  the 

EIMFs spectrum are obtained. To use non-gaussianity in NMF, we must have a quantitative measure of 

non-gaussianity of a random matrix  𝑊1𝐻1 and 𝑊2𝐻2. In this paper, criteria kurtosis to measurement of 

non-Gaussianity is used as stated in Eq. (17).  

  

( , ) ( ) ( )    

1,...,    and   1,...,

l

m m mX l t a t t

l L m n

 

 
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 𝑲𝒖𝒓𝒕(𝒙) = 𝑬{𝒙𝟒} − 𝟑(𝑬{𝒙𝟐})𝟐                                                                   (17) 

 
Therefore, the cost function is introduced in the equation (9) becomes as Eq. (18). 

 

 𝐽 =
1

2
‖𝑋 − 𝑊𝐻‖𝐹

2 +
𝛼𝑘𝑢𝑟𝑡(𝑊1𝐻1)+𝛽𝑘𝑢𝑟𝑡(𝑊2𝐻2)

𝑘𝑢𝑟𝑡(𝑊1𝐻1)×𝑘𝑢𝑟𝑡(𝑊2𝐻2)
                                                                               (18) 

 

Where 𝛼  and 𝛽  parameters control the non-Gaussianity of matrices 𝑊1𝐻1  and 𝑊2𝐻2 . Differentiating 𝐽 

with respect to a given element 𝑊1 give 

 

    
𝜕𝐽

𝜕𝑊𝑡,1
=

𝜕

𝜕𝑊𝑡,1
(

1

2
∑ (𝑋𝑖,𝑗 − 𝑊𝑖,1𝐻1,𝑗 + 𝑊𝑖,2𝐻2,𝑗)𝑖,𝑗

2
  +

𝛼(
1

𝐵𝑁
∑ (𝑊𝑖,1𝐻1,𝑗𝑖,𝑗 )2)2

1

𝐵𝑁
∑ (𝑊𝑖,1𝐻1,𝑗𝑖,𝑗 )4

)                                             (19) 

 

After simplifying the equation (19), its matrix notation can be written as:  

  

𝜕𝐽

𝜕𝑊1
    = −(𝑋 − 𝑊1𝐻1 + 𝑊2𝐻2)𝐻1

𝑇  +  𝛼
4𝑚2(𝑊1𝐻1)𝑚𝑒𝑎𝑛(𝐻1

2)𝑊1−4𝑚2
2(𝑊1𝐻1)𝑚𝑒𝑎𝑛(𝐻1

4)𝑊1
3

𝑚4
2(𝑊1𝐻1)

                            (20) 

 
where (. )𝑇  stands here as transpose operator and 𝑚𝑖  is the 𝑖𝑡ℎ  moment. The recursive multiplicative 

update step for gradient descent is given by 

 

𝑊1 ←  𝑊1 − 𝜂𝑊
𝜕𝐽

𝜕𝑊1
                                                        (21) 

 𝐻1 ←  𝐻1 − 𝜂𝐻
𝜕𝐽

𝜕𝐻1
                                                                                                                                             

where 𝜂  is positive learning rate that it is chosen so that the first and third term in Eq. (21) is removed as 

Eq. (22). 

 

𝜂𝑊 =  𝑊1./((𝑋 − 𝑊1𝐻1 + 𝑊2𝐻2)𝐻1
𝑇 − 4𝛼

𝑚2(𝑊1𝐻1)𝑚𝑒𝑎𝑛(𝐻1
2)𝑊1

𝑚4
2(𝑊1𝐻1)

                                           (22) 

                                                                      +4𝛼
𝑚2

2(𝑊1𝐻1)𝑚𝑒𝑎𝑛(𝐻1
4)𝑊1

3

𝑚4
2(𝑊1𝐻1)

)                                                                                                       

 

𝑊1 ←  𝑊1.∗ [𝑋𝐻1
𝑇]./[(𝑋 − 𝑊1𝐻1 + 𝑊2𝐻2)𝐻1

𝑇 − 4𝛼
𝑚2(𝑊1𝐻1)𝑚𝑒𝑎𝑛(𝐻1

2)𝑊1

𝑚4
2(𝑊1𝐻1)

                                               (23)               

                                  +4𝛼
𝑚2

2(𝑊1𝐻1)𝑚𝑒𝑎𝑛(𝐻1
4)𝑊1

3

𝑚4
2(𝑊1𝐻1)

] 

 

𝐻1 ←  𝐻1.∗ [𝑊1
𝑇𝑋]./𝑊1

𝑇[(𝑋 − 𝑊1𝐻1 + 𝑊2𝐻2) − 4𝛼
𝑚2(𝑊1𝐻1)𝑚𝑒𝑎𝑛(𝑊1

2)𝐻1

𝑚4
2(𝑊1𝐻1)

                                              (24) 

                                                                                     +4𝛼
𝑚2

2(𝑊1𝐻1)𝑚𝑒𝑎𝑛(𝑊1
4)𝐻1

3

𝑚4
2(𝑊1𝐻1)

] 

 

Where .∗ and ./ are element-wise multiplication and divide, respectively. Similarly, the updates for  𝑊2  
and 𝐻2 can be obtained. 
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4. Simulation result 
In this section, computer simulations are used to verify the accuracy of the proposed BSS method and 

to compare it to other BSS algorithms. The criterion that is used for these comparisons is the Output 

Signal to Noise Ratio (OSNR) of the first and second independent components, IC1 and IC2.  

The OSNR of the separated sources is depicted in Eq. (25).   

                                                                                               

                                                                                  (25) 

 

Figure 2. Block diagram of proposed SCBSS algorithm 

 
 

(1) Initialize 𝒎=1and ensemble number N =2 

(2) Assume  𝒂𝟏 = 𝒎𝒂𝒙 (𝒙(𝒕))  and the standard deviation 

of error  𝜹𝟏 =
𝒂𝟏

√𝑵
 . 

(3) Decompose the signal with EEMD and obtain the matrix 

of IMFs.     

(4) Increment m and Calculate    

𝜹𝒎 =
𝟏

𝒏
∑ [

𝟏

𝑵
∑

𝟏

𝑳

𝑵
𝒋=𝟏 ∑ |𝒄𝒊(𝒕𝒌) − 𝒄𝒊𝒋(𝒕𝒌)|𝑳

𝒌=𝟏 ]𝒏
𝒊=𝟏 . 

(5) If  𝜹𝒎 < 𝟎. 𝟎𝟎𝟎𝟎𝟏 + 𝜹𝒎−𝟏    

then set 𝒂𝒎 = 𝜹𝒎√𝑵   and go  to step 3, 

              else if  ∆𝜹 < 0.00004  
       then N =2N and go to step 3. 

      else    optimum  values of N and a are found. 

 

Figure 3. Proposed adaptive EEMD 
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where m is the number of sources, 𝑠𝑗 is the jth source, and  𝑠𝑗̃  is a estimation of the  𝑠𝑗 source. 

In these simulations, all algorithms are tested using a single-channel signal that includes two speech 

signals, as is shown in the Figure 4. Table 1 shows a comparison between the proposed BSS method 

and BSS methods based on SSA and EMD in noisy environments, respectively. Tabel 1 affirms that 

the OSNR of IC2 of the SSA-based method is lower than 11 dB; and the IC1 and IC2 of the EMD 

based method is not separated from its mixture, in the noisy environment, successfully. That means 

that EMD method is sensitive to noise and the separated signals using SSA method are mixed together 

yet. However, the proposed BSS method in this paper is powerful in distinguishing between sources 

and noise, with OSNR above 14 dB for IC1 and above 16 dB for IC2. Figure 5 shows that two hidden 

sources in the single mixture Figure 4.c are obtained after applying our proposed SCBSS. 

In the future works, we will like to improve the proposed method by adding the better constraints on 

Gaussian-NMF and increase speed up our algorithm by its implementation on FPGA prototype.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method 

 

OSNR of IC1(dB) 

 

OSNR of IC2(dB) 

 

EMD-based 

method with 

noise[8] 

 

11.831 

 

14.239 

 

SSA-based method 

with noise[6] 

 

11.626 

 

10.89 

 

Proposed method 

with noise 

 

14.709 

 

16.392 

Table 1. Comparison between performance of the proposed 

method and SSA and EMD based methods in noisy 

environment in term of OSNR applying the proposed BSS 

method 
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Figure 4. Waveform of two real speech 

signal (a) Male speech signal (b) Female 

speech signal (c) Mixture of two above signals. 
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5. Conclusion 
In this paper, we proposed a new nonnegative matrix factorization based on maximization of non-

Gaussianity sources using modified Hilbert spectrum. In this paper, a fast and accurate single-channel 

source separation algorithm was presented. This algorithm, which was based on the adaptive EEMD 

and NG-NMF, was able not only to separate independent sources but also to separate the noise from 

the sources. Computer simulations showed that the proposed algorithm improved the performance of 

the BSS system in a noisy environment, compare to the SSA and EMD methods.         
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