
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol.

3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.97 e-ISSN: 2251-7545

637

A Novel Approach for GPS/INS Integration using

Recurrent Neural Network with Evolutionary

Optimization Techniques

N.Sivasankari

Master Student, Dept. of EEE,

Regional Centre of Anna University, Tirunelveli,

Tamilnadu, India.

nshankari_81@yahoo.com

M.Malleswaran

Assistant Professor, Dept. of ECE,

Regional Centre of Anna University, Tirunelveli,

Tamilnadu, India.

malleshaut@gmail.com

Abstract—Integration of Global Positioning System (GPS) and

Inertial Navigation System (INS) has been extensively used in

aircraft applications like autopilot, to provide better

navigation, even in the absence of GPS. Even though Kalman

Filter (KF) based GPS/INS integration provides a robust

solution to navigation, it requires prior knowledge of the

error model of INS, which increases the complexity of the

system. Hence Neural Networks (NN) based GPS/INS

integration are available in literature. But the NN based

solutions have problems such as convergence and inaccuracy.

To get better convergence ability the Recurrent Neural

Network like Jordan Neural Network is proposed. Normally

Back propagation Algorithm (BPA) is used to train the

Recurrent Neural Network. But BP algorithm has

disadvantages such as slow convergence rate and inaccuracy

due to local minima. To overcome these problems,

Evolutionary Algorithms like Genetic Algorithm (GA) and

Particle Swarm Optimization (PSO) trained Jordan Neural

Network is proposed to get better position accuracy of the

target. In this work, GPS/INS integration based on neural

networks like Back Propagation Neural Network (BPNN) and

Jordan Neural Network using BPA, GA and PSO are also

analyzed and their performance parameters are compared.

Keywords-Recurrent Neural Network (RNN); Jordan Neural

Network; Genetic Algorithm (GA); Particle Swarm Optimization

(PSO).

I. INTRODUCTION

The present navigation systems mainly rely on GPS

(Global Positioning system) to provide accurate position

and velocity information.GPS is capable of providing

accurate information to unlimited number of users. Though

GPS is accurate and the accuracy does not degrade with

time, it suffers from its own drawbacks and errors. The

major drawback related to GPS is satellite signal blockage

in urban canyons. On the other hand an INS (Inertial

Navigation System) is a self contained system that

incorporates three accelerometers and three angular velocity

components with respect to previous position of the

vehicles. The sensors constantly monitor the vehicle’s linear

accelerations and rotation rates. In general, an IMU (Inertial

measurement unit), which incorporates three axis

accelerometers and three axis gyroscopes can be used as

position and altitude monitoring devices. However the

accuracy of INS decreases with time due to wear and tear of

mechanical sensors that exhibit long term error growth [12].

Considering the drawback of both the navigation systems,

integrating GPS/INS data provides better performance in

comparision with either a GPS or an INS standalone system.

For instance, GPS position values can be used to update INS

and improve its long term accuracy. On the other hand, INS

can always provide position information which can be used

during GPS outages. Accurate position can be estimated

using INS values, provided the exact error difference

between GPS and INS values are known before there is an

outage of GPS signal. INS is also capable of providing

position and altitude information at higher data rates [13].

Conventional GPS/INS integration is accomplished by

Kalman Filter (KF). Even though it works well for both

linear and non-linear trajectory, it requires the prior

knowledge of the position error estimates of INS which is

not always possible and also raises the complexity of the

system due to the requirement of large memory. The

inadequacies of KF can be overcome by using AI (Artificial

Intelligence) algorithms and techniques.

In this paper Recurrent Neural Network (RNN) based

GPS/INS integration method with evolutionary learning

algorithms like GA and PSO are proposed. Jordan network

is proposed due to its ability of converging. Faster learning

of this network can be achieved through GA and PSO

algorithms. So that better computational efficiency can be

achieved. The Jordan network based GPS/INS integration

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol.

3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.97 e-ISSN: 2251-7545

638

using evolutionary algorithm is the novelty of the proposed

method. The performance parameters of feed forward

network like Back Propagation Neural Network (BPNN)

and RNN like Jordan Network using BPA, GA and PSO are

also compared. This paper is organized as follows. Section

II deals with proposed architecture for GPS/INS integration

using Recurrent Neural Network, Section III deals about

Neural Networks like BPNN and Jordan network with their

architecture, Section IV deals with weight optimization

algorithms like BPA, GA and PSO, Section V shows the

experimental setup and simulation results and section VI

deals with conclusion of this paper.

II. PROPOSED ARCHITECTURE FOR GPS/INS INTEGRATION

USING RECURRENT NEURAL NETWORK

 The architecture of GPS/INS integration scheme is shown
in Figure 1, in which we have introduced any one of the
Neural Networks (NN) like BPNN and JORDAN network
for training the INS data using evolutionary algorithms. The
NN can be operated in both the training mode as well as the
prediction mode. The NN receives the data from INS
mechanization that contains three position components along
the East direction (longitude), the North direction (latitude),
and the Vertical direction (altitude). The desired outputs are
provided by GPS, the neural network then accumulate the
acquired navigation knowledge by updating the synaptic
weights whenever the GPS signals are available. As long as
GPS signals are available, the learning process continues to
reduce the estimation error in order to obtain the optimal
network parameters.

Figure 1. Proposed architecture for GPS/INS integration

In Neural Networks, the synaptic weights should be

updated during the navigation process to adapt the network
to the latest dynamic condition whenever the GPS signal is
available. The training algorithm modifies the network
parameters to minimize the mean square error. In case of the
GPS outage, the latest updated weights are applied to provide
real time prediction. The importance of Jordan network for
GPS/INS integration is usually related to its ability to
continuously adapt its structure to the application.

III. NEURAL NETWORKS

In this paper, two different neural networks have been

analyzed. First the Back Propagation Neural Network which

comes under the feed forward neural network is analyzed

and the remaining one is the Jordan network which comes

under the recurrent type of neural network.

A. Back Propagation Neural Network Architecture

BPNN is a multi-layer artificial neural network that uses

extend gradient-descent based delta-learning rule and

provides computationally efficient method for changing the

weights to learn a set of input, output samples, thereby

proving good responses to the input [4]. The architecture of

BPNN is shown in Figure 2.

Figure 2. Back Propagation Neural Network Architecture

B. Jordan Neural Network

Jordon network shown in Figure 3 is a kind of recurrent

network having feedback from the output value. At a

specific time t, the previous output value and the current

input are used as the inputs to the hidden node. After

obtaining the output for a given set of inputs, the output

value is sent back through the recurrent links to the context

units and saved there for the next training (at time step t+l)

[9]. The context units are used only to memorize the

previous activations of the output unit.

Figure 3. Jordan Neural Network Architecture

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol.

3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.97 e-ISSN: 2251-7545

639

IV. WEIGHT OPTIMIZATION ALGORITHMS

A. Back Propagation Algorithm (BPA)

In BPA algorithm, the weights and the bias of the output

node are updated using gradient- descent based delta-

learning rule as follows.

 h

i

h

i

h

i woldwneww )()((1)

 1)(1)(1 boldbnewb  (2)

Similarly the weights and the bias of the hidden node is

updated using gradient- descent based delta-learning rule as

follows

x

i

x

i

x

i woldwneww )()((3)

boldbnewb )()((4)

The weight and bias correction terms in equation (1), (2),

(3) and (4) can be written as

Weight correction terms:

ik

h

i yw  and ii

x

i zw  (5)

Bias correction terms:

kb  1 and ib  (6)

In equations (5) & (6) the term is the learning rate k

and i are the error coefficients at the output and the hidden

units respectively.

B. Genetic Algorithm (GA)

Genetic Algorithm is an intelligent exploitation of

random search used in optimization problems. Hence it can

be used for RNN weight optimization. GA starts at multiple

random points (initial population) when searching for a

solution. Each solution is then evaluated based on the

objective function. Once this has been done, solutions are

then selected for the second generation based on how well

they perform. After the second generation is drawn, they are

randomly paired and the crossover operation is performed.

This operation keeps all the weights that are included in the

previous generation but allows for them to be rearranged.

This way, if the weights are good, they still exist in the

population. The next operation is mutation, which can

randomly replace any one of the weights in the population

in order for a solution to escape the local minima. Once it is

completed the generation is ready for evaluation and the

process continues until the best solution is found [10, 11].

The objective function (evaluation function) is used to

provide a measure of how individual solutions have

performed in solving the problem. It takes a chromosome as

input and produces an objective value as a measure to the

chromosome’s performance. To maintain uniformity fitness

function is needed to transform the objective value to a

fitness value. Fitness value is a quality value which is a

measure of the reproductive efficiency of chromosomes. In

GA, fitness is used to allocate reproductive traits to the

individuals in the population and thus act as some measure

of goodness to be maximized. The fitness function can be

defined as

)(1

1
)(

xf
xF


 (7)

Alternate representation of fitness function to transform

the objective function to get the fitness value F(i) as below.

)(

)(
)(

1 i

N

i

i

xP

xP
iF


 (8)

In equation (8), ix is the i
th

 chromosome,)(ixP is the

probability that i
th

 chromosome being populated, and N is

the total number of chromosomes. The population is then

operated by three main operators; reproduction (selection),

crossover and mutation to create a new population of points.

Mutation introduces variations into the chromosome. This

variation can be global or local. It adds new information in a

random way to the genetic search process and ultimately

helps to avoid getting trapped at local optima. Having a

mutation probability newly generated off springs is mutated

at each position in the chromosome.

C. Training of BPNN and Jordan Network using GA

Training of and BPNN and Jordan using GA start with

randomly generated initial population having a number of

chromosomes (i.e. random weight for NN) as shown

below.

INSw1

INSw2
Timew1

Timew2
hw1

hw2

Figure 4. Chromosome formed for BPNN using GA

INSw1
INSw2

Timew1
Timew2

cw1
cw2

hw1
hw2

Figure 5. Chromosome formed for Jordan network using GA

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol.

3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.97 e-ISSN: 2251-7545

640

Based on the error produced in the training of BPNN and

Jordan, fitness function is defined. The fitness of each

individual chromosome is calculated. Based on the fitness

value, a pair of chromosomes is selected in a way that they

are fit for the combination process. By doing crossover and

mutation new chromosomes are generated [5].

D. Particle Swarm Optimization (PSO)

In this paper, the RNN is trained by Particle Swarm

Optimization (PSO) which is also called as swarm

propagation learning. PSO applies the concept of social

interaction to problem solving based on the movement and

intelligence of swarms. It uses a number of particles that

constitute a swarm moving around in the search space

looking for the best solution. The modification of the

particle’s position can be mathematically expressed as

)(*(..)

)(*(..)

22

11

11

k

i

k

ii

k

i

k

i

SGbestRandC

SPbestRandCwVV



 

 (9)

Where w is the inertial weight,
1k

iV is the velocity and

k

iS is the position of agent i at iteration k, iC is

acceleration constant, iRand is the random number

distributed between 0 and 1, iPbest is the pbest of agent,

Gbest is the gbest of the group.
11   k

i

k

i

k

i VSS (10)

Pbest updation is given by

)({)1(kPbestkPbest ii  If)1()1(( kPbestkSf ii

1k

iS Otherwise (11)

Gbest updation is given by

)1(min()1( kPbestkGbest i
 (12)

In PSO, balance between the global and local search can

be achieved through the inertial weight factor (w) [7, 8].

V. EXPERIMENTAL SETUP AND RESULTS

The sample values for GPS and INS are extracted from

FDC (Flight Dynamic Control) toolbox supported by

Matlab software and the simulated trajectory is generated as

shown in figure 6. INS values for the given trajectory are

generated after the initial parameter values of accelerometer

and gyroscope sensors are set. Then the corrected INS

values are predicted by comparing the INS values with the

corresponding GPS values. When we predict the corrected

INS values, we predict the Latitude, Longitude and Altitude

separately.

The proposed RNN-based GPS/INS integration module

is examined and analyzed during training and prediction

mode of operations using Matlab. The parameters associated

with the RNN module using GA and PSO training are given

in Table 1, change through the update procedure to achieve

the correct results. Training is performed for latitude,

longitude and altitude components. The actual output that is

corrected INS value for latitude, longitude and altitude

components are found. Over the whole trajectory, no natural

GPS absences are detected and thus the corrected INS

position of each sample was predicted. In order to evaluate

the presentation of the proposed method, GPS signal

outages are purposely initiated. The precision of the

predicted positions are then compared with the results

acquired from GPS solution. In case of a GPS outage, the

recently updated weights are functional to present the real

time prediction [1,2].

Table1. Implementation Parameters for GA and PSO

GA PSO

Parameter Values Parameter Values

Population Size 20 Population Size 20

Crossover
Two Point

Crossover
Inertia weight 0.4

Crossover

Probability
0.5 c1(acceleration constant) 2

Mutation Random c2(acceleration constant) 2

Mutation

Probability
0.2

r1(random number) 1

r2(random number) 1

During the training of neural networks, network over-

fitting problem has been encountered. Network over-fitting

is a classical machine learning problem. It usually occurs,

when the network captures the internal local patterns of the

training data set rather than recognizing the global pattern of

the data set. It is important to realize that the specification of

the training samples is a critical factor in producing a neural

network output which is capable of making correct

response. Two procedures have been evaluated to overcome

the problem of over-fitting namely, early stopping and

regularization. In this RNN model, early stopping procedure

was used to solve the network over-fitting problem. The aim

of early stopping is to mimic the prediction of future

individuals from the present population. The regularization

method is utilized to avoid the over-fitting problem and to

optimize the RNN model. This is known to be a very

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol.

3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.97 e-ISSN: 2251-7545

641

desirable procedure when the scaled conjugate gradient

descent method is adopted for training.

In this paper, early stopping criterion procedure is used

to model the INS position error accurately. During the

training stage, the module performs the function of

understanding the input/output mapping. On the other hand,

artificial GPS absences are intentionally introduced to the

simulated trajectory in order to test its ability to predict the

INS errors and provide reliable INS position information

accurately. A time of absence of GPS signals at subsequent

intervals are selected at different locations on the trajectory

path based on the consideration of GPS jamming and

multipath error. The CPU training time is used to measure

the efficiency of convergence and the Mean Absolute Error

(MAE) and Root Mean Square Error (RMSE) are used to

measure the accuracy. To measure how successful fitting is

achieved between target and prediction, the R-square

statistic measurement is employed. A value closer to 1

indicates a better fit.
Mean Absolute Error:





m

1i

ii ayy
m

1
MAE (13)

R-Square:

n
2

i i

i 1

n

i i

i 1

(y ay)

R Square 1

(y ay)





 
 

 
    

 
 
 




 (14)

 Root Mean Square:

 (15)

Figure 6. Simulated Trajectory

Where the term ‘yi’ denotes target value and the term

‘ayi’ represents computed neural network output value and

the term ‘m’ denotes the number of samples.

The BPA error performance for BPNN and Jordan

network for trajectory are given in figure 7 and 8

respectively. GA error performance curve for BPNN and

Jordan network for trajectory are given in figure 9 and 10

respectively. Similarly, PSO error performance curve for

BPNN and Jordan for trajectory are given in figure 11 and

12 respectively. The performance values obtained for

latitude, longitude and altitude when the network is trained

using BPA, GA and PSO algorithms for trajectory are given

in Tables 2, 3 and 4 respectively.

Figure7. BPNN Error by BPA optimization for trajectory

 Figure 8. Jordan Error by BPA optimization for Trajectory

 Figure 9. BPNN Error by GA optimization for Trajectory





m

1i

2
ii)ay(y

m

1
RMSE

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol.

3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.97 e-ISSN: 2251-7545

642

 Figure10. Jordan Error by GA optimization for Trajectory

 Figure 11. Performance curve for BPNN-PSO for Trajectory

 Figure 12. Performance curve for Jordan-PSO for Trajectory

Table 2. Performance Analysis for Latitude using BPA, GA and PSO in

BPNN and Jordan network for Trajectory

Algorithm Parameter

Latitude

BPNN JORDON

BPA

MAE (m) 0.0270 0.0142

R-square 0.9803 0.9856

RMSE (m) 0.0220 0.0132

Training time 12 sec 9 sec

GA

MAE (m) 0.019 0.0037

R-square 0.9811 0.9854

RMSE (m) 0.0164 0.0037

Training time 7 sec 3 sec

PSO

MAE (m) 0.0195 0.0025

R-square 0.9899 0.9953

RMSE (m) 0.0094 0.0012

Training time 5 sec 1 sec

Table 3. Performance Analysis for Longitude using BPA, GA and PSO in

BPNN and Jordan network for Trajectory

Algorithm Parameter

Longitude

BPNN JORDON

BPA

MAE (m) 0.0292 0.0132

R-square 0.9818 0.9870

RMSE (m) 0.0148 0.0122

Training time 12 sec 9 sec

GA

MAE (m) 0.0191 .0042

R-square 0.9820 .9899

RMSE (m) 0.0157 0.0033

Training time 8 sec 2sec

PSO

MAE (m) 0.0187 0.0028

R-square 0.9829 0.9970

RMSE (m) 0.0153 0.0015

Training time 5 sec 1 sec

Table 4. Performance Analysis for Altitude using BPA, GA and PSO in

BPNN and Jordan network for Trajectory

Algorithm Parameter

Altitude

BPNN JORDON

BPA

MAE (m) 0.0281 0.0159

R-square 0.9797 0.9958

RMSE (m) 0.0211 0.0145

Training time 12 sec 9 sec

GA

MAE (m) 0.0195 .0059

R-square 0.9813 .9876

RMSE (m) 0.0190 0.0019

Training time 8sec 2 sec

PSO

MAE (m) 0.0183 0.0048

R-square 0.9887 0.9958

RMSE (m) 0.0101 0.0030

Training time 5 sec 1 sec

From the simulation results, the Jordon network with

PSO training is better than BPNN when accuracy and

efficiency is concerned. But with the R-square value both

the networks with PSO training provides better learning

capability. From Tables 2, 3 and 4 the Jordon network with

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol.

3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.97 e-ISSN: 2251-7545

643

PSO weight optimization provides better results. Among

Back propagation learning, Genetic learning and Swarm

propagation learning, Swarm propagation learning gives

faster learning. The Learning capability of BPNN is poor

when compared to Jordan network. In Jordan network,

context layer receives information from output layer leading

to the quick convergence of network which receives

information from outer layer for context layer. The

processing time of Recurrent Neural Network may be varied

from one epoch to other epoch, in a selected system. The

training time taken by non-linear trajectory is more than

linear trajectory in all the selected neural networks.

VI. CONCLUSION

In this paper, we have analyzed GPS/INS

integration based neural networks with weight optimization

of Genetic and Swarm propagation learning. The results

presented in this paper indicate the potential of recurrent

neural network in GPS/INS integration. RNN is an

empirical and adaptive model in which prior knowledge is

not required and the design time is short. The knowledge

accumulation of Jordan network is superior when compared

to the Back Propagation network. So it provides better

performance in non-linear maneuvering trajectories. Among

the neural networks analyzed, the Jordan network provides

superior performance when error efficiency and position

accuracy is considered. From this, we concluded that the

Jordan recurrent neural network with PSO weight

optimization is well suited method for real time GPS/INS

integration for Intelligent Navigation System.

REFERENCES

[1] Kai-Wei Chiang, Yun-Wen Huang, “An intelligent navigator for

seamless INS/GPS integrated land vechicle navigation

applications”, Elsevier, Applied soft computing 8, pp.722-733,
2008.

[2] Kai-Wei Chiang, Aboelmagd Noureldin and Naser El-Sheimy, “A

new weight updating method for neural networks based INS/GPS
integration architectures,” measurement science and technology. 15,

2053-2061, 2004.

[3] S N Sivanandam, S Sumathi, and S N Deepa, “Introduction to
Neural Networks using Matlab 6.0”, Tata MC Graw-Hill

puplication.

[4] Ji-Xiang Dua, De-Shuang Huangc, Guo-Jun Zhangc, Zeng-Fu
Wangb, “A novel full structure optimization algorithm for radial

basis probabilistic neural networks” , Elsevier, Neurocomputing 70 ,

592–596, 2006.
[5] De-Shuang Huang, and Ji-Xiang Du, “A Constructive Hybrid

Structure Optimization Methodology for Radial Basis Probabilistic

Neural Networks”, IEEE Transactions on Neural Networks, Vol. 19,
No. 12, December 2008.

[6] D. T. Pham and X. Llu “Training of Elman networks and dynamic

system modelling”, International Journal of Systems and Science,
volume 27, number 2, pages 221,226, 1996.

[7] Min Han, Jianchao Fan, and Jun Wang, “A Dynamic Feedforward

Neural Network Based on Gaussian Particle Swarm Optimization

and its Application for Predictive Control”, IEEE Transactions on

Neural Networks, Vol. 22, No. 9, September 2011.
[8] Mohd Saberi Mohamad, Sigeru Omatu, Safaai Deris, and Michifumi

Yoshioka, “A Modified Binary Particle Swarm Optimization for

Selecting the Small Subset of Informative Genes From Gene
Expression Data” IEEE Transactions on Information Technology in

Biomedicine, Vol. 15, No. 6, November 2011.

[9] Jeffrey Elman, “Finding Structure in Time”, cognitive science,
Vol.14, pp.179-21, 1990.

[10] Ioan Ileana, “The optimization of feed forward neural networks

structure using genetic algorithms”, International Conference on
Theory and Applications of Mathematics and Informatics, pp 223-

234, 2004.

[11] Zhen-guo che, “feed-forward neural networks training: a
comparison between genetic algorithm and back-propagation

learning algorithm”, International journal of innovative computing,

information and control, volume 7, number 10, pp. 5839-5850,
october 2011.

[12] G.Dissanayake and Sukkariah, “ The aiding of low cost strapdown

inertial measurement unit using vehicle model constraints for land
vehicle applications”, IEEE transactions on Robot Automation 17(5)

pp 731-747, 2001.

AUTHORS

Mrs. N. Sivasankari received her B.E. Degree in Electronics and

Instrumentation from Manonmanium Sundaranar University, Tirunelveli
and currently pursuing her M.E Degree in Embedded system Technologies

in Regional Centre of Anna University, Tirunelveli. Her current area of

interest includes Neural Networks, Fuzzy Systems, Evolutionary
Algorithms and Navigation.

Mr. M. Malleswaran received his B.E Degree in ECE and M.Tech. in
Communication systems, and currently pursuing his Ph.D. in MIT Campus

of Anna University Chennai. Currently, he is working as an Assistant

Professor in the Department of Electronics and Communication, Regional
Centre of Anna University, Tirunelveli. His current area of interest includes

Neural Networks, Fuzzy Systems, Evolutionary Algorithms and

Navigation.

