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Abstract—Integration of Global Positioning System (GPS) and 

Inertial Navigation System (INS) has been extensively used in 

aircraft applications like autopilot, to provide better 

navigation, even in the absence of GPS. Even though Kalman 

Filter (KF) based GPS/INS integration provides a robust 

solution to navigation, it requires prior knowledge of the 

error model of INS, which increases the complexity of the 

system. Hence Neural Networks (NN) based GPS/INS 

integration are available in literature. But the NN based 

solutions have problems such as convergence and inaccuracy. 

To get better convergence ability the Recurrent Neural 

Network like Jordan Neural Network is proposed. Normally 

Back propagation Algorithm (BPA) is used to train the 

Recurrent Neural Network. But BP algorithm has 

disadvantages such as slow convergence rate and inaccuracy 

due to local minima. To overcome these problems, 

Evolutionary Algorithms like Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO) trained Jordan Neural 

Network is proposed to get better position accuracy of the 

target. In this work, GPS/INS integration based on neural 

networks like Back Propagation Neural Network (BPNN) and 

Jordan Neural Network using BPA, GA and PSO are also 

analyzed and their performance parameters are compared. 

Keywords-Recurrent Neural Network (RNN); Jordan Neural 

Network; Genetic Algorithm (GA); Particle Swarm Optimization 

(PSO). 

I.  INTRODUCTION  

The present navigation systems mainly rely on GPS 

(Global Positioning system) to provide accurate position 

and velocity information.GPS is capable of providing 

accurate information to unlimited number of users. Though 

GPS is accurate and the accuracy does not degrade with 

time, it suffers from its own drawbacks and errors. The 

major drawback related to GPS is satellite signal blockage 

in urban canyons. On the other hand an INS (Inertial 

Navigation System) is a self contained system that 

incorporates three accelerometers and three angular velocity 

components with respect to previous position of the 

vehicles. The sensors constantly monitor the vehicle’s linear 

accelerations and rotation rates. In general, an IMU (Inertial 

measurement unit), which incorporates three axis 

accelerometers and three axis gyroscopes can be used as 

position and altitude monitoring devices. However the 

accuracy of INS decreases with time due to wear and tear of 

mechanical sensors that exhibit long term error growth [12]. 

 

Considering the drawback of both the navigation systems, 

integrating GPS/INS data provides better performance in 

comparision with either a GPS or an INS standalone system. 

For instance, GPS position values can be used to update INS 

and improve its long term accuracy. On the other hand, INS 

can always provide position information which can be used 

during GPS outages. Accurate position can be estimated 

using INS values, provided the exact error difference 

between GPS and INS values are known before there is an 

outage of GPS signal. INS is also capable of providing 

position and altitude information at higher data rates [13]. 

Conventional GPS/INS integration is accomplished by 

Kalman Filter (KF). Even though it works well for both 

linear and non-linear trajectory, it requires the prior 

knowledge of the position error estimates of INS which is 

not always possible and also raises the complexity of the 

system due to the requirement of large memory. The 

inadequacies of KF can be overcome by using AI (Artificial 

Intelligence) algorithms and techniques.  

 

In this paper Recurrent Neural Network (RNN) based 

GPS/INS integration method with evolutionary learning 

algorithms like GA and PSO are proposed. Jordan network 

is proposed due to its ability of converging. Faster learning 

of this network can be achieved through GA and PSO 

algorithms. So that better computational efficiency can be 

achieved. The Jordan network based GPS/INS integration 
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using evolutionary algorithm is the novelty of the proposed 

method. The performance parameters of feed forward 

network like Back Propagation Neural Network (BPNN) 

and RNN like Jordan Network using BPA, GA and PSO are 

also compared. This paper is organized as follows. Section 

II deals with proposed architecture for GPS/INS integration 

using Recurrent Neural Network, Section III deals about 

Neural Networks like BPNN and Jordan network with their 

architecture, Section IV deals with weight optimization 

algorithms like BPA, GA and PSO, Section V shows the 

experimental setup and simulation results and section VI 

deals with conclusion of this paper. 

II. PROPOSED ARCHITECTURE FOR GPS/INS INTEGRATION 

USING RECURRENT NEURAL NETWORK 

 The architecture of GPS/INS integration scheme is shown 
in Figure 1, in which we have introduced any one of the 
Neural Networks (NN) like BPNN and JORDAN network 
for training the INS data using evolutionary algorithms. The 
NN can be operated in both the training mode as well as the 
prediction mode. The NN receives the data from INS 
mechanization that contains three position components along 
the East direction (longitude), the North direction (latitude), 
and the Vertical direction (altitude). The desired outputs are 
provided by GPS, the neural network then accumulate the 
acquired navigation knowledge by updating the synaptic 
weights whenever the GPS signals are available. As long as 
GPS signals are available, the learning process continues to 
reduce the estimation error in order to obtain the optimal 
network parameters.  

 
 

Figure 1. Proposed architecture for GPS/INS integration 

 
In Neural Networks, the synaptic weights should be 

updated during the navigation process to adapt the network 
to the latest dynamic condition whenever the GPS signal is 
available. The training algorithm modifies the network 
parameters to minimize the mean square error. In case of the 
GPS outage, the latest updated weights are applied to provide 
real time prediction. The importance of Jordan network for 
GPS/INS integration is usually related to its ability to 
continuously adapt its structure to the application.  

III. NEURAL NETWORKS 

In this paper, two different neural networks have been 

analyzed. First the Back Propagation Neural Network which 

comes under the feed forward neural network is analyzed 

and the remaining one is the Jordan network which comes 

under the recurrent type of neural network. 

A. Back Propagation Neural Network Architecture 

BPNN is a multi-layer artificial neural network that uses 

extend gradient-descent based delta-learning rule and 

provides computationally efficient method for changing the 

weights to learn a set of input, output samples, thereby 

proving good responses to the input [4]. The architecture of 

BPNN is shown in Figure 2.  

 
 

Figure 2. Back Propagation Neural Network Architecture 

 

B. Jordan Neural Network 

Jordon network shown in Figure 3 is a kind of recurrent 

network having feedback from the output value. At a 

specific time t, the previous output value and the current 

input are used as the inputs to the hidden node.  After 

obtaining the output for a given set of inputs, the output 

value is sent back through the recurrent links to the context 

units and saved there for the next training (at time step t+l ) 

[9]. The context units are used only to memorize the 

previous activations of the output unit. 

 

 
 

Figure 3. Jordan Neural Network Architecture 
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IV. WEIGHT OPTIMIZATION ALGORITHMS 

A. Back Propagation Algorithm (BPA) 

In BPA algorithm, the weights and the bias of the output 

node are updated using gradient- descent based delta-

learning rule as follows. 

               h
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Similarly the weights and the bias of the hidden node is 

updated using gradient- descent based delta-learning rule as 

follows 
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The weight and bias correction terms in equation (1), (2), 

(3) and (4) can be written as 

Weight correction terms: 
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h
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Bias correction terms:    

kb  1  and ib     (6) 

In equations (5) & (6) the term  is the learning rate k   

and i are the error coefficients at the output and the hidden 

units respectively. 

B. Genetic Algorithm (GA) 

Genetic Algorithm is an intelligent exploitation of 

random search used in optimization problems. Hence it can 

be used for RNN weight optimization. GA starts at multiple 

random points (initial population) when searching for a 

solution. Each solution is then evaluated based on the 

objective function. Once this has been done, solutions are 

then selected for the second generation based on how well 

they perform. After the second generation is drawn, they are 

randomly paired and the crossover operation is performed. 

This operation keeps all the weights that are included in the 

previous generation but allows for them to be rearranged. 

This way, if the weights are good, they still exist in the 

population. The next operation is mutation, which can 

randomly replace any one of the weights in the population 

in order for a solution to escape the local minima. Once it is 

completed the generation is ready for evaluation and the 

process continues until the best solution is found [10, 11]. 

The objective function (evaluation function) is used to 

provide a measure of how individual solutions have 

performed in solving the problem. It takes a chromosome as 

input and produces an objective value as a measure to the 

chromosome’s performance. To maintain uniformity fitness 

function is needed to transform the objective value to a 

fitness value. Fitness value is a quality value which is a 

measure of the reproductive efficiency of chromosomes. In 

GA, fitness is used to allocate reproductive traits to the 

individuals in the population and thus act as some measure 

of goodness to be maximized. The fitness function can be 

defined as  
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Alternate representation of fitness function to transform 

the objective function to get the fitness value F(i) as below. 
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In equation (8), ix  is the i
th

 chromosome, )( ixP  is the 

probability that i
th

 chromosome being populated, and N is 

the total number of chromosomes. The population is then 

operated by three main operators; reproduction (selection), 

crossover and mutation to create a new population of points. 

 

Mutation introduces variations into the chromosome. This 

variation can be global or local. It adds new information in a 

random way to the genetic search process and ultimately 

helps to avoid getting trapped at local optima. Having a 

mutation probability newly generated off springs is mutated 

at each position in the chromosome. 

C. Training of BPNN and Jordan Network using GA 

Training of and BPNN and Jordan using GA start with 

randomly generated initial population having a number of 

chromosomes (i.e. random weight for NN) as shown 

below.  

 
INSw1  

INSw2  
Timew1  

Timew2  
hw1  

hw2  

Figure 4. Chromosome formed for BPNN using GA 
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Figure 5. Chromosome formed for Jordan network using GA 
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Based on the error produced in the training of BPNN and 

Jordan, fitness function is defined. The fitness of each 

individual chromosome is calculated. Based on the fitness 

value, a pair of chromosomes is selected in a way that they 

are fit for the combination process. By doing crossover and 

mutation new chromosomes are generated [5]. 

 

D. Particle Swarm Optimization (PSO) 

In this paper, the RNN is trained by Particle Swarm 

Optimization (PSO) which is also called as swarm 

propagation learning. PSO applies the concept of social 

interaction to problem solving based on the movement and 

intelligence of swarms. It uses a number of particles that 

constitute a swarm moving around in the search space 

looking for the best solution. The modification of the 

particle’s position can be mathematically expressed as 
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Where w  is the inertial weight, 
1k

iV  is the velocity and 

k

iS  is the position of agent i at iteration k,  iC is 

acceleration constant, iRand  is the random number 

distributed between 0 and 1, iPbest is the pbest of agent, 

Gbest  is the gbest of the group. 
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Pbest updation is given by 
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Gbest updation  is given by   
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                 (12) 

 

In PSO, balance between the global and local search can 

be achieved through the inertial weight factor (w) [7, 8]. 

 

V. EXPERIMENTAL SETUP AND RESULTS 

The sample values for GPS and INS are extracted from 

FDC (Flight Dynamic Control) toolbox supported by 

Matlab software and the simulated trajectory is generated as 

shown in figure 6. INS values for the given trajectory are 

generated after the initial parameter values of accelerometer 

and gyroscope sensors are set. Then the corrected INS 

values are predicted by comparing the INS values with the 

corresponding GPS values. When we predict the corrected 

INS values, we predict the Latitude, Longitude and Altitude 

separately. 

The proposed RNN-based GPS/INS integration module 

is examined and analyzed during training and prediction 

mode of operations using Matlab. The parameters associated 

with the RNN module using GA and PSO training are given 

in Table 1, change through the update procedure to achieve 

the correct results. Training is performed for latitude, 

longitude and altitude components. The actual output that is 

corrected INS value for latitude, longitude and altitude 

components are found. Over the whole trajectory, no natural 

GPS absences are detected and thus the corrected INS 

position of each sample was predicted. In order to evaluate 

the presentation of the proposed method, GPS signal 

outages are purposely initiated. The precision of the 

predicted positions are then compared with the results 

acquired from GPS solution. In case of a GPS outage, the 

recently updated weights are functional to present the real 

time prediction [1,2]. 

Table1. Implementation Parameters for GA and PSO 

 

GA PSO 

Parameter Values Parameter Values 

Population Size 20 Population Size 20 

Crossover 
Two Point 

Crossover 
Inertia weight 0.4 

Crossover 

Probability 
0.5 c1(acceleration constant) 2 

Mutation Random c2(acceleration constant) 2 

Mutation 

Probability     
0.2 

r1(random number) 1 

r2(random number) 1 

 

During the training of neural networks, network over-

fitting problem has been encountered. Network over-fitting 

is a classical machine learning problem. It usually occurs, 

when the network captures the internal local patterns of the 

training data set rather than recognizing the global pattern of 

the data set. It is important to realize that the specification of 

the training samples is a critical factor in producing a neural 

network output which is capable of making correct 

response. Two procedures have been evaluated to overcome 

the problem of over-fitting namely, early stopping and 

regularization. In this RNN model, early stopping procedure 

was used to solve the network over-fitting problem. The aim 

of early stopping is to mimic the prediction of future 

individuals from the present population. The regularization 

method is utilized to avoid the over-fitting problem and to 

optimize the RNN model. This is known to be a very 
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desirable procedure when the scaled conjugate gradient 

descent method is adopted for training.  

 

In this paper, early stopping criterion procedure is used 

to model the INS position error accurately. During the 

training stage, the module performs the function of 

understanding the input/output mapping. On the other hand, 

artificial GPS absences are intentionally introduced to the 

simulated trajectory in order to test its ability to predict the 

INS errors and provide reliable INS position information 

accurately. A time of absence of GPS signals at subsequent 

intervals are selected at different locations on the trajectory 

path based on the consideration of GPS jamming and 

multipath error. The CPU training time is used to measure 

the efficiency of convergence and the Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE) are used to 

measure the accuracy. To measure how successful fitting is 

achieved between target and prediction, the R-square 

statistic measurement is employed. A value closer to 1 

indicates a better fit.  
Mean Absolute Error: 
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 Root Mean Square: 

 

                                                                                          (15) 

                                                                                     

  

Figure 6. Simulated Trajectory 

 

                                                                               

Where the term ‘yi’ denotes target value and the term 

‘ayi’ represents computed neural network output value and 

the term   ‘m’ denotes the number of samples. 

    

The BPA error performance for BPNN and Jordan 

network for trajectory are given in figure 7 and 8 

respectively.  GA error performance curve for BPNN and 

Jordan network for trajectory are given in figure 9 and 10 

respectively. Similarly, PSO error performance curve for 

BPNN and Jordan for trajectory are given in figure 11 and 

12 respectively. The performance values obtained for 

latitude, longitude and altitude when the network is trained 

using BPA, GA and PSO algorithms for trajectory are given 

in Tables 2, 3 and 4 respectively.  

 

 

 

       
 

Figure7. BPNN Error by BPA optimization for trajectory 
 

       
   

        Figure 8. Jordan Error by BPA optimization for Trajectory 

 

        
 

        Figure 9. BPNN Error by GA optimization for Trajectory 
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                Figure10. Jordan Error by GA optimization for Trajectory 

 

 
 

                     Figure 11.  Performance curve for BPNN-PSO for Trajectory 

       
 

 Figure 12. Performance curve for Jordan-PSO for Trajectory 

 
 

Table 2. Performance Analysis for Latitude using BPA, GA and PSO in 

BPNN and Jordan network for Trajectory 
 

Algorithm Parameter 

Latitude 

BPNN JORDON 

BPA 

MAE (m) 0.0270 0.0142 

R-square 0.9803 0.9856 

RMSE (m) 0.0220 0.0132 

Training time 12 sec 9 sec 

GA 

MAE (m) 0.019 0.0037 

R-square 0.9811 0.9854 

RMSE (m) 0.0164 0.0037 

Training time 7 sec 3 sec 

PSO 

MAE (m) 0.0195 0.0025 

R-square 0.9899 0.9953 

RMSE (m) 0.0094 0.0012 

Training time 5 sec 1 sec 

 

 
 

Table 3. Performance Analysis for Longitude using BPA, GA and PSO in 

BPNN and Jordan network for Trajectory 
 

Algorithm Parameter 

Longitude 

BPNN JORDON 

BPA 

MAE (m) 0.0292 0.0132 

R-square 0.9818 0.9870 

RMSE (m) 0.0148 0.0122 

Training time 12 sec 9 sec 

GA 

MAE (m) 0.0191 .0042 

R-square 0.9820 .9899 

RMSE (m) 0.0157 0.0033 

Training time 8 sec 2sec 

PSO 

MAE (m) 0.0187 0.0028 

R-square 0.9829 0.9970 

RMSE (m) 0.0153 0.0015 

Training time 5 sec 1 sec 

 

 
 

Table 4. Performance Analysis for Altitude using BPA, GA and PSO in 

BPNN and Jordan network for Trajectory 
 

Algorithm Parameter 

Altitude 

BPNN JORDON 

BPA 

MAE (m) 0.0281 0.0159 

R-square 0.9797 0.9958 

RMSE (m) 0.0211 0.0145 

Training time 12 sec 9 sec 

GA 

MAE (m) 0.0195 .0059 

R-square 0.9813 .9876 

RMSE (m) 0.0190 0.0019 

Training time 8sec 2 sec 

PSO 

MAE (m) 0.0183 0.0048 

R-square 0.9887 0.9958 

RMSE (m) 0.0101 0.0030 

Training time 5 sec 1 sec 

 

 

From the simulation results, the Jordon network with 

PSO training is better than BPNN when accuracy and 

efficiency is concerned. But with the R-square value both 

the networks with PSO training provides better learning 

capability. From Tables 2, 3 and 4 the Jordon network with 
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PSO weight optimization provides better results.  Among 

Back propagation learning, Genetic learning and Swarm 

propagation learning, Swarm propagation learning gives 

faster learning. The Learning capability of BPNN is poor 

when compared to Jordan network. In Jordan network, 

context layer receives information from output layer leading 

to the quick convergence of network which receives 

information from outer layer for context layer. The 

processing time of Recurrent Neural Network may be varied 

from one epoch to other epoch, in a selected system. The 

training time taken by non-linear trajectory is more than 

linear trajectory in all the selected neural networks. 

VI. CONCLUSION 

In this paper, we have analyzed GPS/INS 

integration based neural networks with weight optimization 

of Genetic and Swarm propagation learning. The results 

presented in this paper indicate the potential of recurrent 

neural network in GPS/INS integration. RNN is an 

empirical and adaptive model in which prior knowledge is 

not required and the design time is short. The knowledge 

accumulation of Jordan network is superior when compared 

to the Back Propagation network. So it provides better 

performance in non-linear maneuvering trajectories. Among 

the neural networks analyzed, the Jordan network provides 

superior performance when error efficiency and position 

accuracy is considered. From this, we concluded that the 

Jordan recurrent neural network with PSO weight 

optimization is well suited method for real time GPS/INS 

integration for Intelligent Navigation System.   
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