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Synchronization of Chaotic Fractional-Order  

LU-LU System with Different Orders  

via Active Sliding Mode Control 
 

 

 

 

 

 
 

 

Abstract—In this paper the main objective of this study is to 

investigate on chaotic behavior of fractional-order modeled LU 

system and its controllability. It has been shown that this 

problem could lead to synchronization of two master and slave 

systems with the different fractional-order. The proposed 

method which is based   on active sliding mode control 

(ASMC) has been developed to synchronize two chaotic 

systems with the partially different attractor. The numerical 

simulation results, verify the significance of the proposed 

controller even for chaotic synchronization task.  
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I.  INTRODUCTION  

It recent years, numerous studies and applications of 
fractional – order systems in many areas of science and 
engineering have been presented [1, 2]. This is a result of 
better understanding of the potential of fractional calculus 
revealed by problems such as viscoelasticity and damping, 
chaos, diffusion, wave propagation, percolation and 
irreversibility. Fractional calculus is a more than 300 years 
old topic. It has useful application in many fields of science 
like engineering, physics, mathematical biology, 
psychological and life sciences [3]. In physical chemistry, 
the current is proportional to the fractional derivative of the 
voltage when the fractional interface is put between a metal 
and an in ionic medium [4].In the fractional capacitor theory, 
if one of the capacitor electrodes has a rough surface, the 
current passing through it is proportional to the non-integer 
derivative of its voltage [5]. Also the existing memory in 
dielectrics used in capacitors is justified by fractional 
derivative based models [6]. The electrode-electrotype 
interface is a sample of fractional-order processes because at 
metal-electrolyte interfaces the impedance is proportional to 
the non-integer order of frequency for small angular  

 

 
 
 
frequencies [7]. Chaotic phenomena have been observed 

in many areas of science and engineering such as mechanics, 
electronics, physics, medicine, ecology, biology, and 
economy. To avoid troubles arising from unusual behaviors 
of a chaotic system, chaos control has received a great deal 
of interest among scientists from various research fields in 
the past few decades [8]. In the recent years, emergence of  
effective methods in the differentiation and integration or 
non integer order equations makes fractional-order systems 
more and more attractive for the systems control community. 
It is verified that the fractional-order controllers can have 
better disturbance rejection ratio and less sensitivity to plant 
parameter variations compared to the traditional controllers 
[9]. Synchronization in chaotic dynamic systems has 
attracted increasing attention of scientists from various 
research fields for its advantages in practical 
application[10].A wide variety of methods have been 
proposed for synchronization of chaotic systems, including 
linear feedback control [11], sliding mode control 
[12],adaptive control [13] and so on. Most of the methods 
mentioned above are used to guarantee the asymptotic 
stability of chaotic systems. Among the fractional order 
controllers, the fractional order active sliding mode control h 
(FOASMC) has been dealt more than others. In this paper, 
we introduce a fractional-order systems chaotic LU. To 
control and synchronization of chaotic fractional-order 
system an active sliding mode controller (ASMC) is 
proposed. This novel control law makes the system states 
asymptotically stable, simulation result show that the 
presented control method can easily eliminate chaos and 
stabilize the market. The rest of the paper is organized as 
follows. 

 

II. FRACTIONAL-ORDER DERIVATIVE AND ITS 

APPROXIMATION 

A. Definition 

The differ integral operator, represented by    
 
  is a 

combined differentiation-integration operator commonly 
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used in fractional calculus and general calculus operator, 

including fractional-order and integer is defined as: 
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There are several definitions of fractional derivatives 
[14]. The best-known one is the Riemann-
         definition, which is given by 
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Where n is an integer such that       , ( ) is 
the Gamma function. The geometric and physical 
interpretation of the fractional derivatives was given 
asfollows 

 ( )  ∫          
 

 

                                                        ( ) 

 
The Laplace transform of the Riemann-           
fractional derivative is 
 

 {
   ( )

   
}     { ( )}  ∑    

       ( )

       

   

   

           ( ) 

 
Where, L means Laplace transform, and s is a complex 

variable. Upon considering the initial conditions to zero, this 
formula reduces to 

 {
   ( )

   
}     { ( )}                                                              ( )

 
The Caputo fractional derivative of order   of a 
continuous function         is defined as follows 
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{
 
 

 
  

 (   )
∫
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    ( )                                                     
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Thus, the fractional integral operator of order   can be 

represented by the transfer function  ( )  
 

   in the 

frequency domain. 
The standard definition of fractional-order calculus does 
not allow direct implementation of the fractional 
operators in time-domain simulations. An efficient 
method to circumvent this problem is to approximate 
fractional operators by using standard integer-order 

operators. In Ref.[15], an effective algorithm is 
developed to approximate fractional-order transfer 
functions, which has been adopted in [16] and has 
sufficient accuracy for time-domain implementations. In 

Table 1 of Ref [17], approximations for    ⁄  with   

from 0.1 to 0.9 in step 0.1 were given with errors of 

approximately 2 dB. We will use the  
     ⁄  

approximation formula [16] in the following simulation 
examples. 

 

    
 

                        

                                
    ( )

 
In the simulation of this paper, we use approximation 
method to solve the fractional-order differential 
equations. 

 

III. DESIGNING THE FRACTIONAL-ORRDER ACTIVE 

SLIDING MODE CONTROL AND ANALYSIS 

 
To design the active sliding mode controller, we have 

procedure a combination of the active controller and the 
sliding mode controller. 

 

A. Active sliding mode controller design 

Let us, consider a chaotic fractional-order description of 
the system as follows 

   
  

          (  )                                         ( ) 

 
 
Where   ( )  (        )

  are real state vector, 
       denotes the linear part of the system dynamics 
and      

    is nonlinear part of the system. Eq. (1) 
denotes the master system. Let    (           )

   be the 
any initial conditions in the chaos attractor of fractional-
orders system (8). 

Now the controller  ( )     is added the slave system.  
Thus: 

   
  

          (  )   ( )                            ( ) 

 
 
That             implies the same roles as 

             for the master system.Synchronization of the 
systems means finding a control signal  ( )     that makes 
state of the slave system to evolve as the states of the master 
system. 

 
Now we define errors dynamics as follows 
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Now following sentence add to the equation (10) 

   
        

  
   

 
Thus: 
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That:                                   
 
Thus: 
 

   
  

         (  )         (  )   

 ( )     
  

      
  

                                                    (  )

Now we assump: 

 (     )    (  )    (  )  (     )    

   
  

      
  

                                                             (  ) 
 

The aim is to design the controller  ( )      such that: 

 

   
   

  ( )                                                                    (  ) 

Then use with the active control design procedure [19, 20] 

U (t) change as following: 

 ( )   ( )   (     )                                                      (  ) 

     Eq. (15) describes the newly defined control input H (t). 

Where H(t) is: 

 

 ( )    ( )                                                                          (  ) 

Where      is a constant gain vector and  ( )    is the 

control input that satisfies in: 

 ( )   {
  ( )     ( )   

  ( )     ( )   
                                                 (  ) 

 Where    ( ) is a switching surface that describes the   

desired dynamics the resultant error is then written by 

   
  

        ( )                                                            (  ) 
 

 

B. Constructing a sliding surface 

Constructing a sliding surface which represents a desired 
system dynamics and the sliding surface described as follows 

 
 ( )                                                                                 (  ) 

 

Where       is a constant vector. An equivalent control is 

found when  ̇( )   which is anecessary condition for the 

state trajectory to stay on the switching surface  ( )  
 hence, the controlled systemsatisfies the following 

conditions in the steady state: 

 

  ( )                 ̇( )                                                  (  ) 

 

Based on equation (18) to (20), it could be deduced: 

 

 ̇( )  (     
     

(     ( ))                                    (  ) 

 

Thus, 

 

   
    

 ( )   (  )    (   
    

 ( ))                         (  ) 

 

     A solution of Eq.22 is 

 

   ( )   (  )     ( )                                                   (  ) 

 

C. Sliding mode control of fractional order system 

We consider the constant plus proportional rate reaching 

Law will be considered [18]. Accordingly the reaching law 

is obtained as: 
 

   
  

         ( )                                                 (  ) 
 

That    ( )  represents the sign function. They      are 

gains that the sliding conditions Eq. (20) are satisfied. From 

Eqs (18), (19) have: 

 

   
  

      
  

         ( )                          (  ) 
 

From Eqs (23) and (24) find control effort can be defined as:  

 

 ( )   (  )    (    )      ( )                 (  ) 

D. Stability 

     First, we represent stability theorems from the fractional 

calculus. 

Theorem 1(         [19]). The following system: 

 

   
 

          ( )                                                    (  ) 
 

Where                         is asymptotically 

stable if  |   (   )  |      ⁄  
According to Theorem 1, as long as all eigenvalues of 
    (  ) (    )     (           )  satisfy the 
conditions |    (  )|     ⁄   the system is asymptotically 
stable. 
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Figure 1.  Stability region of linear fractional-order system wih   

 

IV. NUMERICAL SIMULATIONS 

A. Synchronization between two fractional-order lu systems 

The LU system [20], was introduced by Chen and Lu 
. 
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                                     (  ) 

 
For this system matrix A is 

 

  [
    
   
    

]                                                                (  ) 

 
In this section, we consider using (ASMC) technique to 
obtain synchronization. This controller guarantees the 
synchronization two fractional orders Lu systems with the 
following initial conditions: 
 

(           )  (      ) 
      

(           )  (     )  
 

Consider two fractional order LU systems as master and 

slave systems respectively: 

 

             {

   
  

     (     )
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            {
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      (  ) 

 

Assume that order of the master is         and order the 
slave is         Parameters of the controller are chosen 

as              ,                 and       . 
This selection of parameters results in Eigen 
values                                  which 

Located in a stable region(|   (  )|)    
 ⁄   Fig. shows the 

effectiveness of the proposed controller to synchronize two 
fractional-order modeled systems. It should be noted that 
control u (t), has been activated at      the simulation 
results are shown in Fig.2. 

. 
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Figure 2.  Results of simulaton. 

 

 

V. CONCLUATION 

 
This paper we have studied numerical methods in 

fractional calculus. Then, we have represented the active 
sliding mode control to synchronize. The control parameters 
(         )  the master and slave systems are synchronized. 
Numerical simulations show the efficiency of the proposed 
controller to synchronize chaotic fractional-order. 
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