
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.82 e-ISSN: 2251-7545

544

Multi-paradigm Programming with Modern Languages

Shrinidhi R. Hudli Raghu V. Hudli

Department of Computer Science ObjectOrb Technologies Pvt. Ltd.

M.S. Ramaiah Institute of Technology Bangalore, India

Bangalore, India

Abstract—Most modern programming languages support multiple

programming paradigms. For example, C++ supports procedural and

object-oriented programming. Java supports mostly object-oriented

programming, though one could stretch its features to write procedural

programs. Languages like Ruby Python, Groovy, and Scala, among

others, support functional programming, procedural programming, and

object-oriented programming. Our interest is in examining the features

pertaining to functional programming and object-oriented programming.

Specifically, out interest is in the correspondence between closures in

functional paradigm and objects. In this paper we show that closures and

subsumed by objects. We demonstrate subsumption using structural

analysis.

Keywords- object-oriented programming, functional

programming, closures, objects

I. INTRODUCTION

Earlier programming languages were designed to support

specialized programming paradigms. For example, LISP was

designed to implement functional programming, while C

supported procedural style and Prolog supported logic

programming. Many languages designed since 1980s support

multi-paradigm programming. For example C++ supports

procedural and object-oriented programming. While Java has

a much more aligned with object-oriented programming

compared with C++, it is possible to write procedural style

programs with Java. Modern languages like JavaScript, Ruby,

Python, Scala, Groovy, etc. support multiple paradigms. One

can write procedural, functional and object-oriented programs

in modern languages.

It has been established that object-oriented designs and

programs are needed to tackle the complexity of modern

software. Object-oriented design lends itself to clean

separation so of concerns, allocation of responsibilities and

structural decomposition of software to ensure maintainability

and extensibility [1,2,3]. The main idea with object-oriented

design is to identify key abstractions and their relationships,

including subtypes besides other relationships such as

associations, etc. There is a vast body of knowledge

containing patterns and principles [1,4] that designers can

utilize to arrive at object-oriented designs that are efficient and

robust.

Though functional programming paradigm is old, there is a

renewed interest in functional programming. The functional

paradigm strives for decomposition of software into set of

functions. Functions in the functional paradigm are functions

in the mathematical sense – they map values from a domain to

a range. The domain can be formed using Cartesian products

of other domains. The distinguishing feature of functions is

they return a single value for the given inputs and do not cause

side effects on the parameters. The immutability of parameters

has sparked renewed interest in modern programming,

especially for high-performance parallel programming.

Languages like JavaScript, Ruby and Groovy also use

functional constructs for cleaner and elegant programming

constructs.

In this paper we specifically examine closures, an

important construct of functional programming and its

relationship to objects in a multi-paradigm language. We show

that objects can be uses to achieve the same functionality of

closures. Closures have been popular in languages like

JavaScript, Ruby and Groovy. There was considerable push to

incorporate closures in Java 7, but was not included. Now,

there is renewed effort for inclusion in Java 8. We ask the

question if closures from the functional paradigm provide only

syntactic sugar in multi-paradigm programming languages.

II. OBJECT-ORIENTED PROGRAMMING

After nearly two decades of pedagogy and construction of

software based on object-oriented programming (OOP)

principles, OOP is quite often the programming paradigm of

choice by default.

The key underpinning of OOP is abstraction of behavior.
Ensuring that an object represents a single
abstraction/responsibility [1] moves us towards building
maintainable software. Behavior is modeled using methods
that be invoked on objects. Satisfying Single Responsibility
Principle [1] ensures that methods will be cohesive – that is all
methods of the class representing the object perform related
actions.

Encapsulation in OOP ensures that the data needed for
methods is available for them. This is typically implemented

using instance data of objects. We give two examples of
classes in Ruby.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.82 e-ISSN: 2251-7545

545

class Player class Club

def initialize(name) def initialize(name)

@name = name @name = name

end @players = []

def set_club(club) end

@club = club def get_name

end @name

def get_name end

@name def add_player(player)

end @players << player

def get_club end

@club def number_of_players

end @players.length

end end

end

Classes provide the abstraction in OOP. In the above

example, the Player class provides the abstraction that a player

has a name and a club. The Club provides the abstraction that

clubs also have names and a collection of players. In the

abstraction we have modeled here, a Player can belong to only

one Club; this is a minor detail that does not affect the topic of

discussion of this paper. In another object-oriented language

the structure of the classes would be equivalent. We do not

have an explicit method to set the name of the player or club

as the name is associated with the object at construction time

in the initialize method (aka constructor in Java and C++).

The next key feature of OOP that we need for the purpose

of discussion in this paper is that of encapsulation. The data

needed for the behavior is part of the object. In the example

here the attribute name, denoted @name in Player and Club is

part of each of the objects and is distinct for each instance.

Similarly @club is the Club attribute on the player. The

collection of players needed by Club is part of the Club object.

Hence it is possible to implement methods number_

of_players without passing a collection of Players to a Club

object.

Subtyping or inheritance is another feature of OOP that we

need for this paper. Subtypes provide a powerful mechanism

to not only reuse classes, but to construct programs with

abstractions and substitute abstractions by subtypes. It suffices

here to state that subtypes cannot enforce stronger type

requirements that the types that they extend. They have to

support Liskov Substitutability Principle [1,5].

We now define a subtype of a Player called Batsman as
shown below. In Ruby, type extensions are indicated by “<”

character.

class Batsman < Player

attr_accessor :batting_position

def initialize(name)

super(name)

end

end

We have introduced a new attribute called batting

_position that is needed for the Batsman class. Since the

Player class was more abstract the specific attribute indicating

where in the batting lineup a player was is irrelevant, but is

needed for the Batsman abstraction. The attr_accessor is a

Ruby detail to indicate that batting_position is attribute that

can be set and queried.

The key thing to note here is that Batsman not just reuses
the Player abstraction, but is substitutable wherever Player
abstraction is used. For example, a Batsman object can be
added to a Club using the add_player method defined in the
Club class.

III. FUNCTIONAL PROGRAMMING

Classical functional programming (FP) is based on and
derived from Lambda Calculus [6]. It is now a very well
established fact that Lambda Calculus is equivalent to any
computable function. Lambda Calculus, originally proposed
by Alonzo Church [7] is incredibly succinct for its power. It
has only three constructs

<expression> ::= <name> | <function> | <application>

A name is a sequence of non-blank characters.

A function is an abstraction and definition of a function. It

has two parts, a name and a body, the name is usually a

variable and body is a lambda expression.

Examples of functions are

λx.x+1 which is the successor function to increment a

value

λx.x is an identity function

Once functions are defined, they can be invoked.

Invocations are called application in Lambda Calculus. The

syntax for application is

<application> ::=

(<function expression> <argument expression>)

An example of application is

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.82 e-ISSN: 2251-7545

546

(λx.x+1 2) which will yield 3, since 2 is applied to the
increment Lambda expression

while

(λx.x λa.λb.b) will yield λa.λ b.b, since the λa.λb.b Lambda

expression is applied to the identity Lambda expression.

Languages like Ruby provide a clean syntax for defining

Lambda expressions. For example a successor function can be

created using the following syntax in Ruby

succ = -> x {x + 1}

or

succ = lambda {|x| x + 1}

This creates a Lambda expression called succ. The

application is simply a call on the Lambda expression, using a

method called call as below:
succ.call(2)

JavaScript also supports creation of Lambda expressions. Here

is an example.

function createLambda(){

function succ(x) {

alert(x+1);

} return succ;

}

The application is simply a function call to the JavaScript

function that is returned. The example below illustrates it.

var mySucc = createLambda()

mySucc(2)

It should be clear to the discerning reader that such constructs

can be created even in languages like C using function

pointers. However, they are very cumbersome.

In Lambda expressions, variables can be bound or free. A
variable is bound if it is bound in an expression. For example
in λx.x+1, x is a bound variable as the variable x is bound to
the Lambda expressionλ.y x+1. However, y is a free variable
in orλxin.x+y.

The application of functions that have free variables

present interesting situations. Lambda expressions can be

created with the free variables frozen to an execution context.

Such Lambda expressions are called closures. The Ruby

procedure below creates a Lambda Expression with a free

variable y. The variable is λxfree.x+y inthatthe Lambda

Expression createIncrementingProc creates, but is bound to

the environment or context in which it is created when

createIncementingProc is called. The Ruby Proc object creates

a Lambda expression.

def createIncrementingProc(y)

Proc.new {|x| x + y}

end

Now using createIncrementingProc, we can create distinct
execution environments. inc_by_10 creates a closure λx.x+y
with the free variable y frozen to 10 and inc_ by_20
createsλx.x+y,aclosurewith free variable f rozen to 20.

inc_by_10 = createIncrementingProc(10)

inc_by_20 = createIncrementingProc(20)

Closure application now requires only value for the bound

variable xλx.x+yinthe.AsLambdabefore, expression
application requires calling the method called call

inc_by_10.call(3)

inc_by_20.call(3)

The first call to Lambda expression evaluates to 13, while

the second to 23. Closures in JavaScript have identical

behavior, save for the syntax. The same is true for Python and

other languages.

Closures are quite useful. In languages like Ruby and

Groovy, they are often used to pass as arguments to control

structures or iterators. They have also been used as constructs

for event handling and implementing callbacks. It is quite

convenient to register a callback closure with a defined

execution context and the caller need not be aware of the free

variables in the execution context.

IV. CLOSURES AND OBJECTS

Closures have been used in some languages to also
implement objects. Our view from application programming is
opposite. For a programmer, objects are far more sophisticated
than closures and what can be achieved by closures, can be
achieved by objects too. We will also see in this section, that
objects can go beyond closures and also support function
subtyping.

If closures are dissected, then we see two parts to closures.

The first part is the execution context where the free variables

are frozen; for example setting the value of y to 10 or 20 based

on how createIncrementingProc was called. The second part is

the Lambda expression itself. While Lambda expressions can

be replaced by methods. For example,

succ = lambda {|x| x + 1}

is equivalent to

def succ(x)

x + 1

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.82 e-ISSN: 2251-7545

547

end

So replacing Lambda expressions by equivalent functions

or methods is straightforward. We now have to consider

creation of the execution context for the Lambda expressions

to implement closures. Object attributes provide a convenient

and flexible mechanism to provide execution context. We will

illustrate the idea through an example.

class ClosuresWithObjects def

initialize(y)

@y = y

end

def call(x) x +

@y

end

end

The ClosuresWithObjects class defines a single method

called invoke which takes the bound variables of the

createIncrementingProc closure. The free variable y is frozen

in the initialize function. When an object of

ClosureWithObjects class is created, the execution

environment is frozen exactly as in closures. We now examine

the creation of closures using objects and invocation of

closures. Closures are created by just instantiating objects,

unlike calling of procedures in the previous example.

inc_by_10 = ClosuresWithObjects.new(10) inc_by_20 =

ClosuresWithObjects.new(20)

Now inc_by_10 and inc_by_20 are object instances.

These instances already have execution context created just

like in closures. Application of closures is just invocation of

the call method on these object instances, as below.

inc_by_10.call(3)

inc_by_20.call(3)

The behavior of the objects is identical to closures.

Structurally they are similar, though there are syntactic

differences between closures and objects. Having

demonstrated that objects provide behavioral equivalence of

closures, we will now examine the advantages of using objects

over closures. There are two significant benefits of using

objects over closures even when closures are needed.

In the case of closures the execution context is frozen, but

with objects it is possible to reset or change the execution

context, which can be convenient in some cases. We simply
provide a method or methods to modify the execution context.
For example by adding a set_x method to the
ClosuresWithObjects, we can set new values of x. This allows
reuse and/or reconfiguration of closures implemented with
objects.

A second and more important benefit of implementing

closures with objects is the support for function subtyping [5].

The type of a function can be defined on the basis of the

domain and range it operates on. If T1 is the type of the

function that maps from D1 to R1, then we have

T1: D1 -> R1
A function of type T2 is a subtype of T1 if

T2: D2 -> R2 such that D1 <: D2 and R2 <: R1

where <: indicates subtype relationship.

The range types can be covariant with subtyping while the

domain types are contravariant. These are consistent with

Liskov Substitutability Principles for objects. Function

subtyping can be easily implemented by subclassing.

The increment closure maps from float -> int. If we wanted

a function subtype that incremented from double -> int, then it

is easily obtained by subclassing and overriding the call

method. Of course, languages like Ruby support ducktyping,

covariance of ranges and contravariance of domains are easily

supported. But statically typed languages like Java and C++

can provide this behavior quite easily.

Objects are far more general and powerful than closures.

Objects can provide the full semantics of closure with the

extension of providing subtyping of closures and providing an

execution context that is mutable and not frozen.

However there is interest in modern object-oriented

programming languages to provide support for Lambdas and

closures. Some example are Pythton, Ruby, Java 7 that

provides Lambda and Java 8 is debating inclusion of closures,

and C++0x has support for Lambda. In our opinion these

language extensions only provide syntactic sugar without

really extending the expressive power of the core language. As

demonstrated, what Lambdas and closures provide, objects are

capable of providing the same semantics and more.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.82 e-ISSN: 2251-7545

548

V. CONCLUSIONS

We examined multi-paradigm programming in modern

languages with the special focus on closures from functional

paradigm and objects. There is renewed interest in bringing

closures to Java 8 standard. Our analysis shows that objects

provide all the semantics of closures and more. Closures, in

our opinion, provide syntactic sugar, while objects provide

additional features of resetting or changing execution context

and function subtyping.

REFERENCES

[1] Robert C. Martin, Agile Software Development: Principles, Patterns and

Practices, Prentice Hall, 2002
[2] Eric Evans, Domain Driven Design: Tackling Complexity in the Heart

of Software, Addison-Wesley, 2003
[3] Grady Booch, Object-Oriented Analysis and Design with Applications,

Addison-Wesley, 2007

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,

Design Patterns, Addison-Wesley, 1994

[5] Benjamin C. Pierce, Types and Programming Languages, MIT Press,

2002
[6] Greg Michaelson, An Introduction of Functional Programming Through

Lambda Calculus, Dover, 2011
[7] Alonzo Church, The Calculi of Lambda-Conversion, Princeton

University Press, 1941

