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Abstract. The Massive Ordnance Penetrator(MOP) has been 

developed to destroy deeply buried nuclear components by 

controlled release from a B2 or B52 airplane. This type of release 

must be cockpit software controlled by the Tactical Optimal 

Strategy Game(TOSG) Protocol to optimally determine the war 

game aspects of the dueling from other countries' MOP releases, 

and the depth at which the MOP explosions can occur for 

maximal safety and risk concerns. The TOSG Protocol 

characteristics of games of strategy, games of optimal strategy 

and tactical games are defined initially by the game of strategy as 

a certain series of events, each of which must have a finite 

number of distinct results. The outcome of a game of strategy, in 

some cases, depends on chance. All other events depend on the 

free decision of the players. A game has a solution if there exist 

two strategies, which become optimal strategies when each 

mathematically attains the value of the game. The TOSG 

Protocol war game tactical problem for a class of games can be 

mathematically modeled as a combat between two airplanes, each 

carrying a MOP as the specification of the accuracy of the firing 

machinery and the total amount of ammunition that each plane 

carries. This silent duel occurs, because each MOP bomber is 

unable to determine the number of times its opponent has missed. 

The TOSG Protocol realizes a game theory solution of the tactical 

optimal strategy game utilizing the theory of games of timing, 

games of pursuit, games of time lag, games of sequence, games of 

maneuvering, games of search, games of positioning and games of 

aiming and evasion. The geometric software structure for the 

TOSG Protocol is a game tree identifying the possible depth of 

explosions.  This finite game tree with a distinguished vertex is 

embedded in an oriented plane to facilitate the definition of a 

strategy as a geometric model of the character of a game for the 

successive presentation of alternatives. The tactical optimal 

strategy determination by the TOSG Protocol Cockpit Software 

is mandatory for the execution of the correct and maximally 

effective MOP release by the MOP bomber. 
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I  INTRODUCTION 

The Massive Ordnance Penetrator(MOP) GBU-57A/B[8] 

is the most powerful bunker buster, a 13,000 kilogram weapon,  

developed by the United States to be used against tunnel 

imbedded nuclear devices. The MOP can smash through 20 

meters of reinforced concrete before exploding. The MOP uses 

a Hard Target Smart Fuse [14] that allows detonation inside 

buried or reinforced concrete targets. The detonation occurs by 

the fuse after a sensor informs the fuse that a weapon has 

passed through a number of layers or voids in the target. The 

MOP will be fired by a B2 or B52 Airplane[8]. 

The unique formal TOSG(Tactical Optimal Strategy 

Game) Protocol Cockpit Software Control for MOP Release is  

mathematically defined to assist the MOP bomber’s actions. 

The TOSG Protocol is comprised of three topological models; 

Model 1 two airplanes with MOP explosives as a Two Person 

Zero-Sum game [18,23], Model 2 airplane MOP gunner aiming 

and evasion game[10,11] to fire the MOP at a tunnel, and 

Model 3 the games of timing to predict timing of the MOP 

airplane gunner firing[26]. A class of games which are tactical 

will represent a contest between two players who are trying to 

obtain the same objective. This tactical game has a solution if 

there exists two strategies, which are optimal strategies[23] if 

the integration of their derivative times a function equals the 

values of the game. The game of strategy consists of a certain 

series of events, each of which must have a finite number of 

distinct results[29]. The resource allocation optimization for the 

TOSG Protocol Management is based on the Theory of Games 

of Timing to achieve an optimal strategy and optimal timing 

interval. The optimized process follows a timing chart or 

message sequence of timed events that must have the timing to 

be optimized for each process. The first optimal strategy, 

within the Games of Timing Kernel[7,26]equation achieves the 

TOSG Protocol optimal strategy and optimal timing intervals 

and the second optimal strategy makes an Optimal Strategy 

Decision from the TOSG Protocol Risk Optimization equation 

within the Kernel of the Games of Timing equation.  

 

II.TOSG PROTOCOL WAR GAME PROCESS 

1. Tactical Game Zero-Sum Two-Person Game(MODEL 1) 
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The Tactical Game[23] definition for the TOSG Protocol 

begins with a Zero-Sum Two-Person Game [18]. Zero-Sum 

means that the gain of one player is matched by the loss of the 

other player. In a game the following three observations are 

given for each player: (a) certain choices available, (b) 

knowledge of consequences of the choices for each choice of 

opponent, and (c) choice must be made independent of 

knowledge of the opponent’s decision. There is then a single 

payoff function, because of only one strategy for each player. 

The game is defined by the triplet Γ = (X,Y,Ψ) where X and Y 

are two closed  sets and Ψ is a real valued, measurable function 

defined on XxY; Ψ is called the payoff or utility function. The 

elements xєX and yєY are called pure strategies; the positive 

measures with total measure 1 defined over X and Y are called 

mixed strategies. The game has a solution if there exist two 

strategies F(x) and G(y) such that, 

 

        ∫ Ψ(x,y) dF(x) ≥ V,  all y є Y                                           (1) 

        ∫ Ψ(x,y) dG(y) ≥ V, all x є X                                            (2) 
 

F and G are Optimal Strategies and V is the value of the game. 

Each game will represent a contest between two players each 

trying to obtain the same objective. When one of the players 

succeeds, it will win one unit; the opponent loses the same 

amount, and the contest is over[23]. Each player has limited 

resources and can make only a fixed number of attempts to 

reach the goal. These attempts must be made during the 

interval 0 ≤  t ≤ 1, and each attempt may fail or succeed.  At t = 

0 every attempt fails; at t = 1 every attempt succeeds. At any 

other time an attempt made by player 1 will be successful with 

probability P(t), and will fail with probability 1- P(t). An 

attempt by player 2 succeeds with probability Q(t) and fails 

with probability 1- Q(t). The functions P(t) and Q(t) increase 

continuously. Each player knows these functions and the total 

number of attempts that its opponent can make.  

After the contest begins each player is unable to determine 

how many unsuccessful attempts have been made by the 

opponent. This specialize form of combat or War Game 

between two airplanes P and Q, each carrying MOPs describes 

the accuracy of the firing machinery and the initial resources 

related to the total amount of ammunition that each player can 

carry, i.e., the B2 Airplane currently can carry 2 MOPs, and the 

B52 Airplane can currently carry 6 MOPs[8]. This problem is 

often called a silent duel, because it is assumed that each pilot 

is unable to find out how many times the opponent has fired 

and has missed[23]. In the formal description of the game x and 

y will be vectors that describe the times when the attempts will 

be made and Ψ(x,y) will be the expected gain for player 1. 

 

1.A. Gain For Two Person Zero Sum Game Players[18] 

The gain Ψ(x,y) for the MOP bomber[18,23] is stated 

when it uses strategy x and the opponent nuclear device in the 

tunnel uses strategy y, (x є X, y є Y). Then because of the Zero 

Sum definition, Ψ(x,y) < 0 (MOP bomber loses).  Ψ(x,y) = gain 

or loss to the nuclear device in the tunnel opponent. The use of 

mixed or optimal strategy could also be useful for a more 

exacting development of traits if the single payoff function did 

not yield the expected result. One of the traits would then 

enforce the development of how each pure strategy could be 

optimally used. The further formalism for mixed strategies 

redefines the  parameters as; 

X = MOP bomber m pure strategies = times when attempts are 

made to fire the MOP = probability vector σ(X) э there exists, 

σ(x1),- - - -,σ(xm),  

Y = opponent nuclear weapon in tunnel n pure strategies = 

probability vector τ (Y) э there exists, τ(y1), - - - - τ(yn),  

        ψ(σ,τ)  =   ∑      ∑     σ(x)τ(y)ψ(x,y)                                (3) 

                       xєX    yєY 

Then, the Game Solution for mixed strategies σo and τo  э v = 

ψ(σo ,τo) , ψ(σo,τ) ≥  ψ(σo,τo) ≥  ψ(σ,τo) for  all σ є X, τ є Y. The 

most optimal plan of action for each of the two players is to try 

to maximize their respective payoff functions.  Since the Zero 

Sum Two Person Sum Game is assumed, the most positive 

outcome for the MOP bomber must be determined with the 

following steps[18], 

 

(1) The MOP bomber’s opponent tries to minimize its average 

gain, so the bomber is assured of   min ψ(x,y) , 

                                                        xєX 

(2) The MOP bomber’s choice of action must be made such 

that its payoff will be at least,   max   min  ψ(x,y) , 

                                                   xєX   yєY 

 (3) The payoff  to the opponent is the negative of the MOP 

bomber’s payoff, so for any pure strategy y that the opponent 

choses,  

                    min(- ψ(x, y) )  =  - max(ψ(x, y))                         (4) 

                    xєX                         xєX 

(4) The MOP bomber can then obtain a payoff of at least  

max  min ψ(x,y) or no more than  min  max ψ(x,y), where, 

xєX  yєY                                         yєY  xєX 

                            max  min ψ(x,y)  ≤  min   max ψ(x,y)          (5) 

                            xєX  yєY                  yєY  xєX 

The modeling of the MOP bomber’s experiences by the game 

theory formulation will enable the MOP bomber to visualize 

the risk issues as a consequence of judgments based on 

experience rather than as an issue composed of a maximum 

certainty of personal loss. An N Person Game model[18] is also 

possible for the MOP bomber in reference to other problems, if 

there are multiple players.  However from the basic Two 

Person Zero Sum Game model the baseline for the majority of 

situations has been provided. 

 

2. TOSG Protocol Cockpit Software Aiming And Evasion 

Game Theory (MODEL 2) 

The aiming and evasion game theory[10,11] uses a gunner, 

marksman, or MOP bomber aboard the B2 Airplane or the B52 

Airplane firing the MOP at the tunnel location, with a time lag 

in the MOP gunner’s target position in the tunnel. This game 

theory formulation realizes that the nuclear device will be 
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moved deeper into the tunnel, how and when the marksman 

should make its prediction and the hit probability. The 

marksman has an ideal strategy with the property that every 

near optimal strategy is close to it. One of the most classic of 

military problems is how best to aim at a mobile target, which 

is deliberately maneuvering to confound prediction of the 

position, i.e., the burying deeper of the nuclear weapons in the  

tunnel. How best will the target maneuver the crucial features 

in common, i.e. the time lag between detection of the target and 

arrival of the projectile.  The time lag could be composed of , 

(1) delay between detection of the target and aiming of the 

firing device, and (2) the flight time of the projectile itself. The 

lag will be time lag as a whole, a mixed strategy. When the 

player of a game employs a mixed strategy, it means the 

decision is not made in accordance with any predetermined 

certain plan, but involves a certain amount of  randomness. 

A game theoretic solution prescribes, but does not dictate 

behavior, and the exact probabilities to respectively minimize 

or maximize the probability of a hit. If the target were to follow 

any prescribed certain plan, it would plainly be a ruinous policy 

as soon as the MOP gunner became aware of it. Any fixed 

policy of the MOP gunner would enable the target always to 

escape once the MOP gunner learned the policy[11]. The goal 

should be for an optimal mixed strategy or policies of best 

regulated randomness for each player. A sunken nuclear device  

is aware of an enemy MOP bomber’s presence, but the airplane 

is too high for precise detection. The tunnel nuclear device is 

interested only in not being hit. The device has no offensive 

means. The airplane has one or more MOP’s and to avoid 

extraneous factors it is assumed the MOP bombers aim is 

perfect. The nuclear device in the tunnel knows nothing about 

when or where the MOP will be dropped after detonation. .The 

nuclear device can only maneuver to be deposited deeper to 

minimize the hit probability. The only kinematic restriction is 

that the nuclear device travels with a fixed speed of v. There is 

a time lag T between the MOP bomber’s last information about 

the depth of the nuclear device in the tunnel and the detonation. 

Thus the MOP bomber must aim at an anticipated depth of the 

nuclear device in the tunnel. 

3. TOSG Protocol Game Tree Cockpit Software Structure 

The game theory attempts to answer three questions: (1) 

the optimal strategy of player 1, i.e. the continued changing of 

the depth of the nuclear device in the tunnel, (2) the optimal 

strategy of player 2, i.e. when and where should the MOP 

bomber strike, (3) the value of the game, i.e. what is the hit 

probability when both players use the best tactics. Therefore, 

the TOSG Protocol Geometric Cockpit Software Structure 

realizing these questions is the TOSG Protocol Game 

Tree[6,15] in Figure 1.  The enduring strategy established for 

the Game Tree realizes that each decision depends on the prior 

moves.  This Game Tree will ensure that the MOP Bomber(P) 

achieves a near optimal strategy. This Game Tree Model is 

based on a game theory model [10,11] where there was a 

bomber aiming at a target that was a battleship. The 1,2,3 are 

vertical positions in the TOSG Protocol Models that represent 

positions of the nuclear device(E) in the tunnel. The 

probabilities of E reaching each of the vertical positions 1, 2, 3, 

each deeper in the tunnel are: (1-x)
2
, x , x(1-x).  According to 

game theory P will elect the largest of these three probabilities 

for the calculation of the detonation location for the firing of 

the MOP. The best possible x for E is the value that renders the 

maximum of the three polynomials a minimum at V, the value 

of the game, a root of x = (1-x)
2
, i.e., V = .382. Therefore, for 

any є > 0 there is a mixed strategy which assures P, a MOP 

firing hit with probability ≥ V – є, described as a near optimal 

strategy, an є strategy, where P can attain at most V. 

 

 

 

 

 

 

 

 

  

 
Figure 1. TOSG Protocol Game Tree Geometric Cockpit   Software Structure 

 
 

III. TECHNICAL RISKS AND PROGRAMMATIC RISKS 

FOR DECISION OPIMIZATION 

Key technical risks are developed for the constraints in a 

TOSG Protocol equation realizing multiple sensors detecting 

voids in the target communicating with a Simulation Facility. 

Risk is defined as the chance that a particular decision or 

action can give rise to a variety of outcomes for which the 

mathematical probability can be calculated [3,13].  Therefore, 

the programmatic risk is the integration of the Decision 

Optimization solution containing the constraint values. Risk is 

defined economically by the following equation[13], 

                                RISK = T x V x C                                  (6) 

T = threat, the frequency of potentially adverse events and 

protection of goals, V = vulnerability, the likelihood of 

success of a particular organization, C = cost is the total 

impact of a particular threat exercised by a vulnerable target. 

The mathematical probabilistic mitigating risk equation is 

the following: 

                      RISK = (Pa)(1- Pe)(Ce)                             (7) 

Pa = the probability of attack from the analysis of threat based 

on intelligence of the threat, current security environment[13] 

and other information to arrive at some indications of an event 

at worst case = 1.0. Use a value for likelihood of attack Pa 

other than the assumed worst case value of 1.0 to be used to 

help discriminate among the target set. Pe = system 

effectiveness is the product of Pi and Pn. Pi is the probability 

of interruption indicating how effective the protective system 

is in interrupting an adversary attack,  Pn = the probability of 

neutralization, how well response measures do in force-on-

force conflicts with the adversary given interruption. Ce = 
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consequence of an event including prioritized targets. The risk 

of surface damage from the detonation of the MOP in the  

tunnel is discussed in the research on the Defense 

Cover[16,17] and the Side Effect Risks [22]. 

 

IV. INVARIANT IMBEDDING OF TOSG PROTOCOL 

EQUATION WITHIN GAMES OF TIMING KERNEL 

The invariant imbedding[7] of the TOSG equation (1) 

within the Games of Timing Optimal Strategy and Optimal 

Timing Interval Kernel equation [23] is crucial to the final 

Optimal Decision (TOSG) Protocol equation.  The Optimal 

Strategy Timing Interval enables the Optimal Decision with 

the computations of parameters correlated to the TOSG 

Protocol Equation constraint solutions for (1) perceived threat, 

(2) threat missile, and (3) ground asset being attacked. 

Denman[7] in the research on invariant imbedding and optimal 

control stresses the “concept of optimizing the performance, 

yield or profit of a system.” The optimization equation that 

Denman utilizes is a Linear Regulatory control problem 

equation. This optimization equation, i.e., Lagrangian, uses the 

invariant imbedding concept to completely define the 

performance of the Linear Regulator control system.  

Also, a test for the  integration error is made by Denman’s 

two resulting equations from a coupled set of first-order 

differential equations leads to a two point boundary problem. 

The use of the invariant imbedding concept contains the 

TOSG Protocol equation within the optimization solution for 

the three constraints into the Kernel of the Games of Timing 

Optimal Strategy and Optimal Timing Interval. The Games of 

Timing Theory[26] definition of the Optimal Strategy and the 

Optimal Timing Interval states they are obtained as the 

solution of a certain integral equation with a positive kernel. In 

a wide category of cases this integral equation is equivalent to 

a certain linear differential equation or a system of linear first 

order differential equations. The Optimal Strategy will be 

obtained as the solution of a certain integral equation with a 

positive kernel[7]. 

V. GAMES OF TIMING OPTIMAL STRATEGY AND 

OPTIMAL TIMING INTERVAL (MODEL 3) 

1.  Definition of Symmetric Game of Timing 

The Symmetric Game of Timing [26] is a continuous 

game involving the Bilinear functional 

                1  1 

             0∫0∫K(x,y)dF(x)dG(y),K(x,y) =  - K(y,x)                (8) 

2. OPTIMUM PURE STRATEGY DEFINITION 

For x < y, K(x,y) is a strictly increasing function of x and 

a strictly decreasing function of y [26]. If K(1
-
,1) ≤ 0, there is 

an optimal pure strategy at 1; if K(0,1) ≥ 0, there is an optimal 

pure strategy at 0. It will be proved there is a unique optimal 

strategy which is either a density from some point a to 1, or is 

a jump at 0 and a density from a to 1. If the quantity K(x
-
,y) 

varies in sign as y varies, let b be the value such that K(b
-
,b) = 

0 while K(y
-
,y) > 0 for b < y ≤ 1. The optimal strategy y is a 

density from a to 1 where a > b.  It is shown that the 

determination of the density function depends on the solution 

of a certain integral equation with positive kernel, and the 

theory of such integral equations.  It is shown for a general 

category of cases the optimal strategy can be obtained in terms 

of a system of ordinary linear differential equations. The proof 

of the uniqueness of an optimal strategy can be given in the 

following simpler form. If there are two optimal strategies, 

they must have the same spectrum. 

3. SYMMETRIC CONTINUOUS GAMES DEFINITION 

The equations considered are a class of Symmetric 

Continuous Games involving the bilinear function[26], 

                             1    1 

                        0∫ 0∫ K(x,y)dF(x)dG(y)                         (9) 

 

where x,y range over the real numbers from 0 to 1 inclusive, 

the symmetry of the game reflecting itself in the skew 

symmetry of the kernel K(x,y) [26], 

                          K(x,y) =  - K(y,x)                                       (10) 

 

Concerning the kernel K(x,y), suppose that for x < y, K(x,y) is 

a strictly increasing function of x and a strictly decreasing 

function of y. This property holds for x > y by virtue of the 

skew-symmetry of K(x,y). Across the main diagonal x = y this 

property may cease, i.e., there may be a jump of K(x,y), and 

K(a+δ, a) may be smaller than K(a-δ, a) for small positive δ’s. 

4. FORMAL DEFINITION OF A GAME OF TIMING 

Such a Game is a Game of Timing by virtue of the 

following interpretation. The variables x and y may represent 

the times at which players I and II take certain specific 

actions; and it is profitable for each player to delay action as 

long as possible, provided its action is prior to its opponent’s 

action. If the time x, y at which players I,II take action are near 

each other, there is a decided difference in the outcome 

accordingly as x < y or x > y. Each player is thus subject to the 

following motive: it wishes to delay action so as to increase its 

reward, but at the same time not to delay so long that its 

opponent can with effectiveness precede it.  

5. SYMMETRIC GAME OF TIMING 

A Game will be a symmetric game of timing[19]if the 

kernel K(x,y) satisfies the following conditions: 

K(x,y)   =            A(x,y) for x < y 

0 for x = y 

                                                   -A(x,y) for x > y 

where A(x,y) is continuous in x ≤ y. 

A(x,y) is a strictly increasing function of x and a strictly 

decreasing function of  y. 

A(x,y) has continuous first derivative in x ≤  y and the set of 

points where Ax(x,y) = 0 or Ay(x,y) = 0 contains no linear 

intervals , x = constant. 

                   β1 <  y  < β 2  or y = constant, α1< x < α2 

                  Ax(x,y) ≥  0,       Ay(x,y)  ≤  0  for x ≤  y 

6. OPTIMAL STRATEGY OF A GAME OF TIMING DEFINITION 

The condition for A(x,y) makes a limit on places where 

either of these derivatives are zero. The optimal strategy of a 
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game of timing is unique and consists either of (1) a density 

function from some point a to 1 or, (2) consists of a jump at 0 

and a density from some point a to 1 [26]. 

7. SOLUTION OF A GAME OF TIMING WITH AN INTEGRAL 

EQUATION 

The optimal strategy[7] will be obtained as the solution of 

a certain integral equation with a positive kernel. In a wide 

category of cases this integral equation is equivalent to a 

certain linear differential equation or a system of linear first 

order differential equations[7 ]. 

8. GENERAL CONDITIONS ON AN OPTIMUM STRATEGY FOR 

GAMES OF TIMING 

 

If A(1,1) ≤  0   a pure strategy at 1 is the unique optimum 

strategy 

If A(0,1) ≥  0  a pure strategy at 0 is the unique optimum 

strategy 

 Suppose, A(0,1) < 0,  A( 1,1) > 0, and that there is an optimal 

strategy F(x) for the game, and derive necessary conditions 

satisfied by F(x). Then, [26] 

                 1 

   V (y) = ∫0  K(x,y) dF(x) ≥  0  for all y                            (11) 

 

while, 

       1                              1    1 

   ∫0  V (y) dF(y)   =  ∫0 ∫0  K(x,y) dF(x)dF(y) = 0 

 

By the skew-symmetry of K(x,y).                                       (12)  

9. THE GAMES OF  TIMING SOLUTION FOR TWO OPTIMAL 

STRATEGIES AND OPTIMAL STRATEGY TIMING INTERVAL EXISTS 

IF THEY HAVE THE SAME SPECTRUM.  

  The spectrum of F(x) lies completely in the basic interval b ≤ 

x ≤ 1. This makes an assertion only if b > 0. A new game 

exists where the pay-off is K(x,y), but where x,y are limited to 

the interval b ≤ x ≤ 1, b ≤ y ≤ 1. This game of timing has a 

solution. Assuming the solution to this game will be φ(x), b ≤ 

x ≤ 1, with  φ (1) = 1, φ (b) = 0. Then extend φ (x) below b by 

setting φ (x) = 0, for x < b. This contradiction establishes that 

only the game must be considered over the basic interval  b ≤ 

x ≤ 1. Therefore only the basic interval, the timing interval  

will be considered for this basic interval. This basic interval 

will be the interval from 0 to 1, so that it is stated, 

                        A(x,y) > 0  for  0 < x ≤  1                             (13) 

 

Thus, it has been proven that if there are two optimal 

strategies, they must both have the same spectrum.  
VI. TOSG PROTOCOL DECISION OPTIMIZATION EQUATION 

The basic concept required is for the MOP bomber to 

make a decision to allocate sensor and weapon systems to 

threat launch events. The constraints on this decision are (1) 

perceived threat inventory, (2) threat missile, and (3) ground 

asset being attacked. Therefore the TOSG Protocol equation to 

Allocate Sensor and Weapon Systems Decisions[21] as the 

Objective Function, which will be invariant imbedded[7] 

within the kernel equation for the Games of Timing theory to 

obtain the Optimal Strategy time interval  is stated as: 

TOSG = ASWR+[ α[PTI-PTIc] + β[TM -TMc] + 

                                                               γ[GAA-GAAc] ]   (14) 

ASWD = Allocate Sensor And Weapon Systems to Threat 

                Launch Events Objective Function 

PTI = Perceived Threat Inventory Constraint,  

PTIc = PTI constraint value with risk 

TM = Threat Missile Constraint,  

TMc = TM constraint value with risk 

GAA = Ground Asset Being Attacked,  

GAAc = GAA constraint value with risk 

α = PTI Lagrange Multiplier, β = TM Lagrange Multiplier 

γ = GAA Lagrange Multiplier 

 

The Lagrangian Optimization of the TOSG equation with 

objective function ASWR for each of the three constraints will 

be mathematically derived by obtaining the partial derivative 

of TOSG with respect to each of the three constraints and 

equating the expression to zero to enable a Lagrange 

Multiplier solution for each of the constraints. The risk 

equations[3,13] are included within the three TOSG Protocol 

optimization equation constraint equations. Then, a solution 

for the TOSG Protocol equation containing the constraint 

values can be achieved. The invariant imbedding[7] of 

equation (14) within the Games of Timing Optimal Strategy 

and Optimal Timing Interval Kernel equation is crucial to the 

final Decision Optimization equation. The Optimal Strategy 

Timing Interval enables the Optimal TOSG Decision with the 

computation of parameters correlated to the constraint 

solutions for (1) perceived threat, (2) threat missile, and (3) 

ground asset being attacked. Refer to Figure 2 for the Optimal 

TOSG Protocol Decision Equation Flow Chart. Figure 3 

illustrates the theoretical Performance Analysis of the Three 

TOSG Protocol Models. 

VI. SUMMARY 

         

The TOSG Protocol Cockpit Software is theoretically 

developed for optimal control performance of the MOP 

bomber. The TOSG Protocol is composed of tactical game 

theory as a Zero Sum Two Person game and its 

interconnection to optimal strategy, aiming and evasion and 

games of timing theory. Three topological models with their 

correlated game theory basis are included in the TOSG 

optimization equation with risk constraints. The TOSG 

Protocol Game Tree Geometric Cockpit Software Structure 

represents the transit of the nuclear devices in the tunnel and 

the MOP bomber activity for the three models.    
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