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Abstract- The advanced encryption standard (AES) is the most 

popular encryption standard in the world. Although the AES 

algorithm is theoretically safe, it has been recently reported 

that confidential information could be illegally specified when 

the AES algorithm is used in electronic circuits. In particular, 

the menace posed by fault analysis attacks has become 

extremely serious. This study develops a software simulator to 

evaluate the vulnerability of a cryptographic circuit against 

fault analysis attacks in which multiple analytical methods are 

combined. Simulation results proved the validity of the 

proposed simulator. 
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I.  INTRODUCTION 

Credit cards and electronic identification devices use 
cryptographic circuits to protect confidential information, 
such as monetary and personal identifiable information. 
These cryptographic circuits use encryption standards, the 
theoretical safety of which has been sufficiently verified. 
Although the encryption standards are theoretically safe, it 
has been recently reported that confidential information 
could be illegally specified when the encryption standards 
are used in electronic circuits. In particular, the menace 
posed by fault analysis attacks[1]-[15] has become extremely 
serious. Fault analysis attacks intentionally generate 
operation errors during the encryption processing and 
illegally obtain confidential information by pairing an 
incorrect cryptogram and a correct cryptogram. 

Several methods have been proposed for fault analysis 
attacks. The advanced encryption standard (AES) is the most 
popular encryption standard in the world. To address fault 
analysis attacks against AES, researchers have proposed a 
fault analysis against the key scheduling part and a fault 
analysis that is based on the estimation of the differences 
among multiple errors. Therefore, it is important to evaluate 
the vulnerability of a cryptographic circuit against fault 
analysis attacks during the circuit's design stage. 

The present study develops a simulator to evaluate the 
vulnerability of a cryptographic circuit against fault analysis 
attacks in which multiple analytical methods are combined. 
In the analytical methods that have been previously reported, 
because the types of information used for analysis differ 
from each other, the bytes of a secret key, which is intended 
to be derived, also differ from each other. To improve 
analytical accuracy, the proposed simulator introduces a new 

hybrid method that pays attention to the key byte location 
that is to be derived. The present study also verifies the 
validity of the proposed simulator by performing several 
evaluation experiments. 

II. ADVANCED ENCRYPTION STANDARD (AES) 

AES consists of 128-bit block ciphers, in which a round 
is composed of SubBytes, ShiftRows, MixColumns, and 
AddRoundKey processes, and in which data are transformed 
by repeating the round processing multiple times. The 
number of rounds is determined according to the key length. 
The present study adopts the key length of 128 bits, which is 
a key length that is most often used. In this present case, 10 
rounds are used. MixColumns is omitted only at round 10, 
the final round. For the round processing, the key values 
used at each round are repeatedly calculated using the 
KeySchedule process. SubBytes is used for numeric 
transformation in the form of a byte unit. ShiftRows is used 
for the shift of a byte location.  

III. PROPOSED SIMULATOR 

Fault analysis uses the results obtained by incorrect 
encryption due to an operation error (hereinafter referred to 
as a fault) during the encryption processing. A fault can be 
realized by forcibly changing the intermediate value during 
the encryption processing. When the intermediate value is 
changed, the subsequent calculation results differ from the 
normal results; consequently, the cryptogram, which is the 
final output, differs from the normal cryptogram. Using the 
cryptogram that has been output due to the fault and the 
normal cryptogram, a secret key is analyzed, which is the 
most important element in the cipher. 

As shown in Fig.1, AES encryption can be divided into 
the cryptogram generation and the key scheduling sections. 
Therefore, in fault analysis against AES, different analytical 
methods are used, depending on the cryptogram generation 
section or the key scheduling section in which a fault is to be 
generated. In the proposed simulator, a hybrid analytical 
method is introduced in which two different fault analyses 
are combined. 

A. Fault analysis against the key scheduling section 

Fault analysis against the key scheduling section 
(hereinafter referred to as key analysis) consists of three 
steps, (a), (b), and (c), which are explained below. 
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Figure 1 Example of AES encryption 
 
 
(a) Fault generation and propagation 
Key analysis generates a fault as it generates round key 9 

and analyzes round key 9. The key value, which has changed 
due to a fault being mixed into certain bytes of the round key 
9, is used for the subsequent calculation and affects the 
values of other bytes. Actually, the values of round keys 9 
and 10 are varied from the normal key values and the 
cryptogram using the varied key values is also varied. Figure 
2 shows the generation processes of round keys 9 and 10 in 
the key scheduling section.  

A block, consisting of four rows and four columns 
surrounded by a square (since each row and column is a byte, 
the block is 16 bytes), expresses a round key. For example, 
when a fault occurs at the first row and the first column of 
round key 9 (the top left byte is defined as being at the 0th 
row and 0th column), the results of the fault propagation are 
exhibited as the shaded area.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Example of generation processes of round keys 9 
and 10 in the key scheduling section 

 

 
Here, a fault that has passed through a key substitution is 

expressed in the horizontal line and a fault that has not 
passed through a key substitution is expressed in the oblique 
line. This differentiation is required for Step (b), type 
classification. 

 
(b) Type classification 
Based on the results of the fault propagation obtained in 

Step (a), type classification is performed. Figure 3 shows the 
results of type classification of the example in Step (a) and 
the correspondence table. The type classification procedure 
uses the following steps: (1) the type of a fault (blank or 
oblique line) at round key 9 is confirmed; its location is the 
same as that of the block for type classification; (2) the type 
of a fault (blank, oblique line, horizontal line, or oblique line 
+ horizontal line) of the corresponding block at round key 10 
(a block with the same number in this figure) is confirmed; 
and (3) the confirmed type of a fault is compared with the 
correspondence table in order to perform type classification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1) Results of type classification  in Step (a) 
 
 
 
 
 
 
 
 
 

(2) Correspondence table 
 

Figure 3 Results of type classification of the example in Step 
(a) and the correspondence table 

 
 
(c) Application of attack rules 
The type classification results obtained in Step (b), a 

cryptogram, in which a fault is mixed, and a normal 
cryptogram were used to derive the value of round key 9. In 
actual attacks, it is difficult to generate more than two faults 
in the same row. The proposed simulator performs an 
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analysis, except for cases where more than two faults are 
generated in the same row. In the proposed simulator, five 
analysis (attack) rules are applicable. 
Rule1. When types A and B exist in the same row, the fault 

value of the row can be obtained. 
Rule2. When the fault value of a certain row is already 

known, and type A exists in the upper row, the key 
value at the third column in the row, where the fault 
value is already known, can be obtained. 

Rule3. When types A and D (or F) exist in the same row, 
and the key value of the row is already known, the 
value of a polynomial used in the bytes of the row can 
be obtained. 

Rule4. When two already-known polynomials exist in the 
same row, the key value or the exclusive disjunction of 
the key value can be derived by calculating the 
exclusive disjunction of these polynomials. 

Rule5. When the key value at the third column in a certain 
row is unknown, type A exists in the upper row, and 
types A and D (or F) exist in the row where an 
unknown key value exists, the unknown key can be 
derived by round-robin scheduling (256 ways). 

 

B.  Fault analysis against the cryptogram generation 

section 

This analysis used an analytical method that is applicable 
to multiple faults (hereinafter referred to as finite difference 
analysis). Finite difference analysis can obtain information 
about a secret key by estimating the differences among the 
faults generated in the cryptogram that has been output. This 
section explains the principle of finite difference analysis. 
 

1) Fault occurrence point 
Finite difference analysis defines the time of inputting 

round 10 as the fault occurrence point and assumes that 
multiple faults occur in both the cryptographic intermediate 
value during the processing and in the key value. Figure 4 
shows a fault model at the time of inputting round 10. As 
shown, Error D expresses the fault value that occurred in the 
cryptographic intermediate value, and Error K expresses the 
fault value that occurred in the key value. 

 

2) Estimation of difference 
The difference at every error byte is estimated based on 

the cryptogram containing a fault that has been output in the 
fault model, shown in Fig.4, and the value obtained by 
performing exclusive disjunction on the normal cryptogram. 
Three differences (differences A, B, and C) are generated 
from a one-byte error. The estimation methods of these 
differences are explained in (i), (ii), and (iii), respectively. 

 
(i) Estimation of difference A 
Difference A is defined as a difference in the case where 

fault values, which have passed through the SubBytes 
process, are lined up in a row and a fault value exists at the 

byte of the right endpoint in a row just below the row in 
which the fault values are lined up.  

Difference A is generated when a fault occurs in the 
rightmost column of the key value. Since the average of the 
fault values that have passed through the SubBytes process is 
obtained by round-robin scheduling (from 0 to 255), the 
average of the hamming weights is 4. Moreover, a high 
possibility exists that the hamming weight of a fault value, 
which has not passed through the SubBytes process, is below 
2. These characteristics are used to estimate difference A. 
When one of the following three conditions is satisfied, a 
difference is judged as difference A: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Example of a fault model at the time of inputting 
round 10 
 
 
Condition(a). Fault values exist in an entire row and 

their hamming weights are above 3. Moreover, the 
hamming weight of a fault value at the right endpoint in 
a row just below the entire row is below 2. 

Condition(b). More than three fault values exist in a row 
and the hamming distances between these fault values 
are more than 3. Moreover, the hamming weight of a 
fault value at the right endpoint, in a row just below the 
row in which more than three fault values exist, is 
below 2. 

Condition(c). Two different fault values exist in an entire 
row and the hamming distance between these different 
fault values is below 2. Moreover, the hamming weight 
of one of these different fault values is above 3 and the 
hamming weight of a fault value at the right endpoint, 
in a row just below the row in which two different fault 
values exist, is below 2. 
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Condition (b) is established on the assumption that 

difference A and difference C occur at the same time. 
Condition (c) is established on the assumption that difference 
A and difference B occur at the same time. Figure 5 shows 
examples of differences that satisfy each condition. In this 
figure, all the values are expressed in hexadecimal numbers. 
The judgment method mentioned above cannot be used when 
other multiple differences occur in a row where fault values, 
which have passed through the SubBytes process, are lined 
up. 

 
 
 
 
 
 
 
 
 

(1) Example of condition (a) 
 
 
 
 
 
 
 
 
 

(2) Example of condition (b) 
 
 
 
 
 
 
 
 
 

(3) Example of condition (c) 
 

Figure 5 Examples of differences that satisfy each condition 
regarding the estimation of difference A 

 
 
(ii) Estimation of difference B 
The estimation of difference B is performed after 

removing difference A from the differences that occur 
between a normal cryptogram and a cryptogram in which the 
faults are mixed. When multiple fault values other than 00 
are lined up in a row, these fault values are judged as 
difference B. Difference B occurs when a fault is generated 
in a row other than the rightmost column of the key value. 
When the numbers of bytes used to judge difference B are 
different from each other, the following two conditions are 
used for judging difference B: 

 
Condition(a). When more than two fault values are 

continuously generated from the rightmost column in a 
row and the hamming weight of the leftmost fault value 
is below 2, the leftmost fault value is judged as 
difference B. 

Condition(b). When the hamming weight of the leftmost 
fault value in condition (a) is above 3, all the fault 
values that are lined up are judged as difference B. 

 
Condition (b) is established on the assumption that 

difference B and difference C occur at the same time. Figure 
6 shows examples of differences that satisfy each condition. 

 
 
 
 
 
 
 
 
 

(1) Example of condition (a) 
 
 
 
 
 
 
 
 
 

(2) Example of condition (b) 
 

 
Figure 6 Examples of differences that satisfy each condition 
regarding the estimation of difference B 

 
 
(iii) Estimation of difference C 
The estimation of difference C is performed after 

removing difference A and difference B from the differences 
that occur between a normal cryptogram and a cryptogram in 
which the faults are mixed. After removing difference A and 
difference B, all the remaining differences can be considered 
as difference C. However, there is a possibility that 
difference A and difference B are incorrectly estimated. To 
avoid this, the following differences are not judged as 
difference C: 

 
Condition(a). When a fault value, which has not passed 

through the SubBytes process of difference A, and an 
existing byte are superposed. 

Condition(b). When a difference is adjacent to difference 
A. 
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Condition(c). When a difference and the byte of a fault 
value, which has passed through the SubBytes process 
of difference A, are superposed. 

Condition(d). When the hamming weight of a fault value 
is small. 

 

3) Calculation of key value candidates and the selection 

of key values 
The candidates for key values are calculated using 

difference A and difference C obtained in Section (2). For 
difference A and difference C, the analytical methods 
proposed by Chen et al. [1] and Giraud [2] are used, 
respectively. The candidates for key values that are obtained 
include candidates that are obtained due to incorrect 
difference estimations. Therefore, the key values are selected 
from the candidates that are obtained based on the ratio of 
the number of key values being candidates to the number of 
key values without being candidates. 

 

C. Hybrid analysis 

The analytical methods described in Sections 3.1 and 3.2 
do not always derive all the key values (16 bytes). In the 
analytical method described in Section 3.1, the number of 
derived keys changes according to the fault location. Under 
the condition that not more than two faults occur in the same 
row, keys with up to 10 bytes can be derived. However, key 
byte locations that cannot be derived at any fault location 
also exist. In the analytical method described in Section 3.2, 
almost all the key values can be derived when approximately 
200 cryptograms are used. However, all the key values are 
not always derived.  

The proposed simulator pays attention to the derived key 
byte locations and introduces a hybrid fault analysis that can 
complement the key values using key analysis, which could 
not be derived using finite difference analysis. Figure 7 
shows the configuration of the proposed simulator.  

As shown, calculation A of a key value candidate 
expresses the calculation of a key value candidate using 
difference C, and calculation B of a key value candidate 
expresses the calculation of a key value candidate using 
difference A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 7 Configuration of the proposed simulator 
 
 

IV. EVALUATION EXPERIMENTS 

A. Experimental conditions 

In order to evaluate the proposed simulator, we have 
conducted several experiments. In the experiments, a 
conflation method was used as the configuration method for 
SubBytes transformation in AES. Table 1 shows the detail of 
the experimental conditions. 

TABLE I.  EXPERIMENTAL CONDITIONS 

Name Value 

Key length 128 bit 

Block length 128 bit 

Key value Constant 

Input plain text Random 

Fault location Random 

Fault probability 30%-70% 

The number of Cipher text 200 

 
 

B. Evaluation of the hybrid analytical method 

In order to verify the key analysis, we conducted the 
several simulations using the key analysis. Figures 8 and 9 
show the results. As shown in these figures, the number of 
derived keys changes according to the fault locations. 
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Figure 10 shows the number of derived keys obtained 
using the hybrid analytical method that was newly 
introduced in the proposed simulator and the number of 
derived keys obtained using only finite difference analysis. 
In this figure, the vertical axis represents the number of 
derived keys and the horizontal axis represents the number of 
simulations. As shown in Fig.10, the number of derived keys 
was larger when the hybrid analytical method was used than 
when the finite difference analysis was used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 Result of three fault locations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 Result of four fault locations 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 10 The number of derived keys obtained using the 
proposed method 

 
 
This means that the key analysis could complement the 

key values that could not be derived using the finite 
difference analysis. Thus, a hybrid analytical method that 
paid attention to the derived key byte locations could 
improve the analytical efficiency. 

There was a case where the difference in the number of 
derived keys was small when comparing the results of the 
hybrid analytical method and the finite difference analysis. 
Most likely the reason for this was that a condition existed in 
the key analysis under which the key byte locations could not 
be derived if more than two faults occurred in the same row. 

 

V. CONCLUSION 

The present study developed a new simulator that used a 
hybrid analytical method in which finite difference analysis 
and key analysis were hierarchically combined. The 
proposed simulator paid attention to the byte locations of the 
keys that could be derived using both analyses so the 
analytical accuracy was improved. Evaluation experiments 
confirmed that the proposed hybrid analytical method could 
complement two analytical methods (finite difference and 
key analyses), which were the bases of the proposed method.  

In the future, we will examine a method to estimate the 
key values that could not be derived using the proposed 
method. 
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