
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.70 e-ISSN: 2251-7545

463

An Approach for Configuration management in Ultra Large Scale systems

Mohammad Ali Torkamani
R&D Department

Iranian Telecommunication
Manufacturing Company

Shiraz, Iran
torkamani_ali@yahoo.com

Abbas Bahrami
R&D Department

Master Student of Information
Technology, Shiraz University,

Shiraz, Iran
Abbas_bh1@yahoo.com

Seyyed Hossein Ahmadi
R&D Department

Iranian Telecommunication
Manufacturing Company

Shiraz, Iran
Sha13267@yahoo.com

Hamid Bagheri
Information Technology

Kurdistan University
Sanandaj, Iran

bagheri.hamid@gmail.com

Ali Bayat
R&D Department

Iranian Telecommunication
Manufacturing Company

Shiraz, Iran
alibayat23@gmail.com

Mohammad Reza
Khodabakhshi

R&D Department
Iranian Telecommunication
Manufacturing Company

Shiraz, Iran
khodabakhshi.2008@gmail.com

Abstract— Ultra Large scale systems have some
characteristics which are derived from their scale. These
characteristics of ULS systems make it impossible to rely on
our current approaches in software development and new
approaches for development, deployment, control and
management should be made. Today’s central developing
approach in software systems to tackling ULS challenges will
not suffice. One of the most important phases in developing
information systems is configuration management. In ULS
Configuration management is much more complicated than
current practices. The available tools which are developed for
configuration management so far are operating centrally while
different developers participate in developing ULS systems
independently. Due to the existing dependencies between
components of such systems and their characteristics, change
management needs new approaches. Change in one
component may result in some side effects in other relating
components. In some approaches, for instance, changing in one
component which is used by many developers, while they are
unaware, may influence their systems. To tackle such
problems, in our paper we propose and analyze new approach
for configuration management. This method is implemented in
R&D department of Iranian Telecommunication
Manufacturing Company (ITMC).

Keywords-component; Ultra Large Scale system(ULS);
Configuration Management; Component (key words)

I. INTRODUCTION
Nowadays several team and organization developers are

participating in developing large scale systems. These teams
may locate in different part of the globe, have different time
working and may have different culture and formal
languages. Each team is responsible for developing one or
more sub-systems [1]. Some of these developers may
develop their sub-system through the assembly of available

components, developments of available codes and modules
or the purchase of commercial of the Shelf (COTS)
components, or outsourcing of some parts of work. One of
the current problems in such large systems is applying new
change and Software Configuration Management (SCM). In
other words due to the dependency between components the
change management is very important [2]. How to apply
these changes so that all teams are informed about updates as
quickly as possible? How changes should be executed in
order to have minimum re working? Does every change
should be done without informing other developers? In fact
some sequences of changes should be managed, in other
words the dependency chain in developing system should be
managed and taken into account [3]. Because when a system
is made up of assembled components, an error in system
configuration may result in software miss-functioning.

In Ultra Large Scale systems, the problem of
configuration management is more serious than traditional
systems. The requirements of ULS system have basically
conflict with each other and are unknown. Some
requirements of ULS systems may be unknown until the time
which they are used. The Components of ULS systems for
example computes, users, software are basically inconsistent,
heterogeneous and constantly changing. Components of
software due to the different reasons such as different
platforms, methodology and programming languages are
heterogeneous and inconsistent. Services and components
are inconsistent because they are developed by different
developers. As a result the consequences of some changes
are unpredictable. Scale is a main reason of such
consequences [4]. Beside that components and users of such
large systems are heterogeneous. It means they have
different requirements and different potentials.

So for developing Ultra Large Scale systems we need
tools which support different sites and contain different

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.70 e-ISSN: 2251-7545

464

repository [5]. Most of the available tools use single shared
repository and in fact they use centralized approach [6].
Furthermore due to the variety of developers and
heterogeneous and developing approaches in ULS systems,
the tools which have undependable platforms are applicable.
Nowadays most available tools for management
configuration are platform dependent. Indeed in ULS
systems there is no single developer for developing,
maintaining and evolution of systems. The centralized
coordinator and controller of traditional systems in available
models are not applicable for ULS systems. In fact in ULS
systems there are decentralized and localized control. For
example in Internet nobody is responsible for developing,
running and evaluation but different organizations have
different responsibility toward the Internet [4]. Centralized
approaches can’t cope with Ultra Large Scale systems [2, 7].
In other words decentralized approaches are more
appropriate than centralized approaches [2, 7]. The tools
which are developed for configuration management so far
are centralized. In some approaches developers must use the
last version of component, which is developed by another
developer, without delivering any idea about it while these
changes may affect their functionality. For example in
StarTeam, the component server is installed on server and
developer by their clients through user name and password
can use the server. In this approach there is a change
management which approved file is available and it is used
by developers.

In the rest of the paper, to tackle such problems the
decentralized approach for configuration management will
be introduced. In the second section of the paper the
proposed model for configuration management will be
introduced and then in third section evaluation of the
proposed model and case study will be discussed. Finally we
have a conclusion section.

II. DECENTRALIZED APPROACH FOR ULS SYSTEMS
In configuration management process which is

introduced in [8, 5] by pressman and Somerville, customer
sends change request; developer verifies it and makes
changes if applicable. But ULS systems and some situations
where we encounter different developers not addressed.

Suppose we want to develop a ULS system which
different developers are cooperating in developing the
system. Each developer is completely independent and each
team has its own manager.

 Each developer have their own repository which holds
their components. Each developer may use some
components which are made by other developers. Owner of
the software is the customer but he/she is not necessarily the
owner of the all classes and components. Developers are
owner of components; of course this issue is depending on
the contract. In current configuration management software
and approaches if one developer wants to change his
component, the other developers should use the last version
of component and viewpoint of other developers are not
considered whereas these changes due to dependency

between components may have influences on other
developers’ job.

An idea used in our approach is very simple. Developers
of ULS systems deliver their idea about the component
which they have used. In fact a polling system is used. The
algorithm of this approach is shown in Figure 1.

Figure I. proposed approach

Suppose a developer makes a change in his component.
In proposed approach there is relationship between
developers. When a developer wants to make a change in
his component, he sends a message to other developers who
are using his component. Each developer sends a vote (reject
or accept) to the requester. In this approach each developer
should be aware of other developer’s responsibilities. In fact,
every developer should have a table in his database which
contains fields such as component name and developer’s ID.
This table should be updated constantly. If all developers
approve the change, the requester can update the component
and repository. After that the requester sends a message to
show that the changes are made. Developers who need a
component can download new version through the network.
If a developer disagrees with the changes, gives a requester a
negative vote with the reason. If this reason can convince the
requester, the changes may be canceled. If the agreement
does not reach, the software owner will make a decision
about applying changes. In proposed model analyzing of
dependencies is done immediately after each change request
and before enforcing the changes. All organizations, teams
and developers are taking part in applying these changes. So
if one component changes the risk of consequences of these
changes in other components will be minimized.

III. EVALUATION AND CASE STUDY FOR PROPOSED
MODEL

The proposed approach is implemented by Visual Studio
.Net in R&D department of Iranian Telecommunication
Manufacturing Company (ITMC). The implemented
software is able to demonstrate the dependency graph as well

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.70 e-ISSN: 2251-7545

465

as management and transfer the change between different
developers across the globe. The software is currently
passing the final test and is used for developing large scale
systems in R&D department in ITMC. In table I the
proposed approach is compared with some available
approaches in this area.

TABLE I. COMPARE PROPOSED APPROACH WITH AVAILABLE APPROACH

Proposed
approach

CCC
Harvest

Clear
Quest

Star
Team

COMPARIN
G No

Distribute
d

Centrali
zed Centralized Centralize

d Database 1

YES NO NO NO

Graphically
display the
dependency

graph

2

YES NO NO NO User interface
support Farsi 3

Appropria
te

NO
MORE
EXPEN

SIVE

NO MORE
EXPENSI

VE

NO
MORE

EXPENSI
VE

All prices are
for the supply

of IRAN
4

YES YES YES YES

Supports
variety of

development
tools

5

NO NO NO NO CMS website 6

GOOD HIGH HIGH HIGH
Performance
and execution

speed
7

YES NO YES NO Support RUP 8

YES NO YES YES
Support

development of
SOA approach

9

YES NO NO NO

Support
manages

dashboards of
development

team and
sending email

10

YES NO NO NO
Comment on

the changes by
all teams

11

YES NO NO NO
Show history

of components
graphically

12

YES YES YES YES Web Usability 13

Win
Win,

Solaris,
Linux

Win,
Solaris,
Linux

Win,Solar
is, Linux Platform 14

As clearly implies from first row of the table, proposed

model as opposed to all available approaches has distributed
database and this approach is applicable for ULS systems.
Also as compared to other approaches, implemented
software can support graphical reports as well as proper final
cost. As clearly shown by row 11 in table 1, in proposed
model all developing teams send request change to the
manager of team developer. This is the main difference
between proposed model and current models.

 Table II shows the approach evaluation which resulted
by experts and software developers who have at least 15
years experience. This evaluation covers 10 aspects. The
maximum number is 4 for each aspect. The average number
of evaluation is registered in the table. The total average
number for evaluation is 3.3 out of 4.

TABLE II: EVALUATION BY EXPERTS

No Aspects of Average
number

1 Methods and Algorithms 3

2 Safe and convenient access 4

3 User interface 3

4 Speed and efficiency 3

5 Appropriate information systems
major 4

6 The system suitable for large scale 3

7 Take advantage of the various
methodologies 4

8 Version Management 3

9 Last Cost 4

10 Can be used as an educational tool 2

11 Average 3.3

IV. CONCLUSION
Nowadays different developers worldwide are

participating in developing ULS systems. Due to the existing
dependencies between components of such systems and their
characteristics, change management needs new approaches.
Change in one component may result in some side effects in
other related components. In some approaches, for instance,
changing in one component which is used by many
developers, while they are unaware, may affect their
systems.

Available central developing approach in software
systems to tackling ULS challenges will not suffice.

 In ULS Configuration management is much more
complicated than current practices. The available tools which
are developed for configuration management so far are
operating centrally while different developers participate in
developing ULS systems independently.

In proposed model we introduce decentralized approach
for configuration management in ULS systems.

In proposed model, analysis of dependencies is executed
immediately after each change request and before final
confirmation. All organizations, teams, developers and
stakeholders are participating in changes. This approach for
ULS systems which have different and unknown
characteristics is more applicable. As a result of this

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.70 e-ISSN: 2251-7545

466

approach, the consequences of changes and side effects will
be the minimum. The benefit of proposed approach derives
from prevention action. It means before any changes could
take place different developers can reach agreement and
proper coordination will be done. This approach is
compatible with characteristics of ULS systems. As
mentioned before, proposed approach is implemented by
Visual Studio .Net in R&D department of Iranian
Telecommunication Manufacturing Company (ITMC). The
implemented software is able to demonstrate the dependency
graph as well as management and transfer the change
between different developers across the globe. Proposed
model as opposed to all available approaches has distributed
database and this approach is applicable for ULS systems.
The total average number of evaluation, which was contain
10 different aspects, was 3.3 out of 4 which simply shows
the moderate success of the proposed approach.

V. FUTURE WORK
It can be clearly seen in table I that proposed model just
supports Windows, but in ULS systems developer may use
different platforms. In other words there are heterogeneous
operating systems and softwares, so we are planning to
extend the implemented model to support different
platforms.

REFERENCES

[1] B.Al-Ani, H.Edwards, “a Comparative Empirical Study of

Communication in Distributed and Collocated Development Teams”,
IEEE, 2008.

[2] SEI, Ultra-Large-Scale Systems, the Software Challenge of the
Future, Carnegie Mellon University, 2006.

[3] Ivins, Wendy, “Managing Flow Dependencies: The Missing Link in
Co-coordinating Distributed Teams in Large-Scale Development
Projects”, IEEE, 2008.

[4] S.Ostadzadeh, F.Shams Aliee, “The Role of MDA in ULS
Integration: Challenges and solutions”, 5th International Conference
on Information Technology Managenent(ICTM), 2008.

[5] I. Sommerville, Software Engineering, 9th Edition, 2010.P.Cravino,
D.Lawrence, A.López, O.Alonso, S.Brandt, Enterprise Software
Configuration Management Solutions for Distributed and System z,
IBM, 2009.

[6] M.Torkamani, S. Bashavard and N. khalili Safa, “ULS
Configuration Management challenges”, 2nd International Conference
on Contemporary Issues in Computer and Information Science(
CICIC 11), Iran, Zanjan, 2011.

[7] R.S.Pressman, Software Engineering: A Practitioner's Approach, 7th
International edition, 2009.

