
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.69 e-ISSN: 2251-7545

455

“Visual” Mathematics Used in a Novel Machine

Learning Architecture

Neven Dragojlovic

CEO

EYEYE Sarl au

Tangier, Morocco

eyeye689@gmail.com

Abstract— At some point or another, everyone has surely had

the experienced of, staring at mottled surroundings without

any thought in mind and finding how one’s visual system

started detecting patterns - like faces or animals or objects – in

the mottled background. Once those patterns have been

detected, moreover, it becomes difficult to observe the mottled

surroundings and not perceive the patterns without engaging

in active repression. This spontaneous organization of input

into recognizable molds starts with just a few patches of visual

input that activate a schema that is already present in the

memory structure. The visual system then queries the

surrounding features to see if they fit into the activated

schema, thus constructing a richer and more compelling

pattern. Psychology would interpret this process as a

Rorschach test that shows what our unconscious mind is

primed to perceive at any moment.

This type of experiences suggeststhat, in order for intelligence

to emerge, controlled chaos is necessary. Self-feedback and

multiple calculation points, each of which follows simple rules,

permit the emergence of chaotic attractor-networks, which

bring stability to a system, and which, if networked together

can create intelligence. This paper describes a computational

system that is capable of such a feat, depending only on a

mechanical process that does not require thought or

consciousness. The systemonly requires local processing units,

their associated memory, and simple software that interprets

its immediate environment, (that is, the activity of surrounding

processing units). In order to be functional, such a system

cannot limit itself to the simplest possible case (such as letters

or simple geometric shapes), but must be able to process all

types of input and form active networks out of it.

The system described in the following article uses a fully

parallel pattern-type language that can be used in multiple,

easily joined modules, where each module can be used in

processing a specific type of information. As it uses simple

programs in each computing element, the information is easily

integrated and debugged. Complex statistical models, which

form the foundation of most current search and recognition

algorithms, are not necessary in this system as it automatically

uses simple search and recognition strategies at each

computing component.

(Based on U.S. Patent 7,426,500 and pending patent

US13/117,176)

Keywords:Cellular parallel architecture; distributed

memory; distributed computing; swarm intelligence;

hexagonal framework; chaotic attractors in complex

systems; networks; nodes with relationships; clusters;

matrix vectors; multi-level up and down information flow;

language analysis; language analysis

INPUTUNIT

 The basic component in this architecture is the

Processing Cell (PC), a roughly hexagonal structure in with

one central hexagon (H
(level)

 – the colored cells in Figure

1)connects with the 6 surrounding hexagons (h(binary)) in a 2-

dimensional hexagonal lattice. Each H
(level)

 is also connected

to cells in higher – or lower-level lattices in which h(binary) of

a PC in a higher-level layer are each connected to the H
(level)

of a corresponding PC in the level immediately below it.

Information is processed as it flows from a base-level Input

Layer through to successive higher-level layers in which

schemata of increasing generality are formed.Each PC is

identified by its central hexagon address (for example

PC000).

Figure 1

 In the input layer, the 6 h(binary) in each PC detect the

stimulus covering their respective area of the input field (for

example, light intensity in visual processing), and compare

it to the threshold level that the stimulus must reach in order

to change the h(binary)’s state from 0 to 1. If Xi and Yi

represent the (x, y) coordinates of input pixels found in a

rectangular input field (like photographic memory in digital

cameras, or an internet page), N represents the number of

those pixels in the area covered by a specific h(binary), and

(Xi, Yi)represents each pixel’s activation status (0 or 1), The

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.69 e-ISSN: 2251-7545

456

stimulus intensity for h(binary) can be represented as:

S = (∑ (Xi, Yi))/N for i = 1 to N

Given a threshold constant K, the value of h(binary) is set such

that:

If S ≥ K,

Then h(binary) = 1 (Activated)

Else h(binary) = 0 (Not activated)

The values of the 6 peripheral hexagons in each PCare

recorded its central hexagon (H
(level)

) using the following

algorithm. Each peripheral hexagon in a given PC is

assigned a unique binary identifier based on its position in

the tile . As Figure 2 shows, starting with the hexagon at the

top of the tile, each hexagon is identified by 2
K
, where K

ranges from 0 to 5. To record the pattern of activated

hexagons in each PC, then, the activation value of each

peripheral hexagon (1 or 0) is multiplied with the hexagon’s

identifier (2
0
 through 2

5
 in base-ten notation), and the binary

values for each all six hexagons are summed, resulting in a

single six-digit binary value ranging from 000000 to 111111

(i.e., 64 possibilities). For any given value, each “1”

indicates the activation of the peripheral hexagon

corresponding to that place-holder, meaning that each

specific binary value represents a specific spatial

arrangement or pattern of activated peripheral hexagons in

the PC.

Figure 2

 Each hexagon in the full hexagonal lattice, has its own

unique identifier, as shown in Figure1. These identifiers are

3-digit decimal values in which the first two digits identify

the central hexagon of each PC, and the last digit takes on

the values 1-6 and identifies the peripheral hexagons in each

PC, starting at the top of the tile and proceeding clockwise.

 Figure 1 shows an arrangement of seven Processing

Cells in the input layer along with their addresses (PC000,

PC010, PC020, PC030, PC040, PC050, and PC060). Together,

seven PCs together form a Patch (P
(level)

(address)) whose

address is taken from the central PC’s address (in this case

P
0

000). The Patch is a unit that sends and receives

information from one Memory Unit (MU). The Memory

Unit (MU000), which is described in detail below, has an

address based on the Patch address, in this case 000.

 The addressing system extends to surrounding patches,

and with a further addition of binary places can extend to

Patches-of-Patches as far as necessary. Lee Middleton and

Jayanthi Sivaswamy have developed this Hexagonal Image

Processing (HIP) numbering system, and the associated

mathematics [6]. It permits representation of hexagonal

images as vectors in which the ordering of elements (which

excludes the central hexagons for each PC) is established by

the unique identifiers for each hexagon, and the elements

themselves hold the 0 (inactive) or 1 (active) values.

 In the following example, the hexagons where the

stimulus exceeds the threshold are represented by a color,

and their binary number changes from 0 to 1. The central

hexagon represents that pattern in a binary and a decimal

form (see Figure 3).

Binary form: 111010

Decimal form: 58

Figure 3
 The two ways of representing this activated pattern are

interchangeable. The decimal number represents its binary

equivalent and is used more often for simplicity and greater

readability, though both are presented because the binary

representation allows for a direct reconstruction of the

activated pattern. As noted earlier, this system’s architecture

includes an input layer and an arbitrary number of

hexagonal lattice processing layers (the algorithms

operating in the input and higher-level layers differ,

however). To identify a specific hexagon in the system, the

hexagon’s level is represented by a superscript (h
(y)

 for

peripheral hexagons and H
(y)

 for the central hexagons in

each Processing Cell; H
(0)

, for example, is a central hexagon

in the input (0) layer. The position of the hexagon on the

layer is indicated by a subscript using the unique identifier

discussed above. This designation system allows us to

precisely describe the connections between the input layer

and higher-level processing layers.

To begin processing the stimulus, the activation pattern

from each PC in the input layer is sent by the central

hexagons (H
0
x) to a uniquely associated hexagonal cell in

the upper layer PC, such that each Patch of 7 PCs provides

input to a single higher-level Processing Cell. In the

example shown in Figure 4, the seven H
0
s (H000, H001, H002,

H003, H004, H005, H006) send their output (PCO) to the

associated hexagon in the higher-level lattice (in a sense, it

overlaps the lower-level PC).

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.69 e-ISSN: 2251-7545

457

Figure 4

Upper level

binary
position

Lower level

PC output
(PCO)

Lower

level Hx
address

Initial

activation
threshold

Initial

Upper
level

activation

H1
000 27 000 1/6 1

h1
001 23 060 1/6 1

h1
002 30 010 1/6 1

h1
003 01 020 1/6 1

h1
004 19 030 1/6 1

h1
005 22 040 1/6 1

h1
006 42 050 1/6 1

Total

number of 1s

in the input

23 Average
activation

23/7= 3

Revised
activation

threshold:

3/6

Initial
APN: 127

Revised

APN: 123

Table 1

 The processing of input in this layer is, however,

different than that in the input layer. Specifically, the

higher-level Processing Cell engages in an iterative process

in which only the strongest signals of the input Patch are

retained. Initially, each hexagon in PC
1
000 (including the

central hexagon H1
000) determines whether the number of

activated hexagons in its associated lower-level PC
0
x meets

its activation threshold, which is initially set at 1/6. In Table

1, all of the inputs PC
0
x have at least one activated hexagon,

meaning that all the upper-level PC’s cells are activated.

 To extract more information from the signal, however,

H
1

000 resets the activation threshold for the whole PC using

the following algorithm. It averages the total number of

activated hexagons in the input layer Patch, rounding to the

nearest whole number. For the input in Table 1, this results

in a new threshold of 3, which results in the deactivation of

h
1

003, since the associated PC
0
 only had one activated

hexagon.

Once the the activation threshold is adjusted, the upper layer

PC (in this case, PC
1

000) switches from an Input Mode to an

Output Mode, and creates an Active Patch Number (APN)

showing which PC
0
s activated its component hexagons. The

APN of PC
1
000, in this case 123 (1111011), is formed by

adding the binary positional representations of its activated

hexagons, ranging from h
1

001 (1, or 000001) to h
1

006 (32, or

111111) and H
1
000 (64, or 1000000). Each APN, then, is

associated with a unique activation pattern for PC
1
000. The

APN for each higher-level PC is then sent for storage to a

dedicated Memory Unit (MU), which is described in the

following section.

MEMORY UNIT

Each MU is composed of 64 Dedicated Cells (DC), where

each DC corresponds to a unique PC
0

activation pattern

(primitive). These DC primitives are shown in an

“exploded” form in Figure 5. All seven hexagonal cells in a

PC
1
 send output to their associated MU in the following

format: PCO
0
 / APN / H

1
xbinary positionx. H

1
000, for

example, would send 27/123/000,or in binary form

011011/1111011/000, to all MU’s DCs in a binary position

000 (center of each DC number), whereas h
1
001 would send

23/123/000 to binary position 001, or in binary form

010111/1111011/000. Each DC is only activated (activation

status set to 1 instead of 0) if the first 6 bits of at least one

input number correspond to its number (the yellow

hexagons in Figure 5 represent activated DCs). The

activating numbers are stored in the DC’s binary place,

which is the same as the binary position of sending PC in

the patch.

Figure 5

The key innovation in this memory system is the 3D

structuring of the MU, which can be visualized as a set of 8

truncated octahedrons connected at their truncation planes

(see Figure 6, which shows three MU and how they would

connect in the horizontal plane). This yields 64 hexagonal

surfaces, which correspond to the 64 DCs, and can be

thought of as equivalent to the H
0
x’s in the associated input

layer Patch. Specifically, the edges of each DC correspond

to a unique digit’s place and activation status in the 6-digit

binary number associated with the activation pattern the DC

corresponds to. The activation state of this digit is

preserved across DCs, such that each shared hexagonal

border in the MU represents either a 1 or a 0. The

implication of this is that each DC hexagon connects only

with DCs whose PC
0
 activation pattern numbers differ only

in one binary place. For example: the hexagon containing

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.69 e-ISSN: 2251-7545

458

number 30 (011110) would connect to the hexagons

representing numbers 31 (011111), 28 (011100), 26

(011010), 22 (010110), 14 (001110), and 62 (111110)(see

Figure 6).

Figure 6

The ends of each MU attach to other MUs corresponding to

the Patches that surround the original patch (H
0

000) in the

input layer. In effect, this transposes the 2-dimensional

structure of the input field into a 3-dimensional memory

representation (which, as is described below, is what allows

the activation of previously stored “schemata” by related,

but not identical input patterns). In this case, for example,

the patches H
0
100 and H

0
400 (see Figure 1) are represented by

neighboring MUs in the y-axis direction, H
0

200 and H
0

500 in

the z-axis direction, and H
0

300 and H
0

600 in the x-axis

direction. As the set of MUs are expandable in 3D, allowing

for the absorption of input from as large an input layer as

necessary, and because no MU’s activation state is fully

determined only by its own patch input (as described

below), different sets of meaning structures in the overall

memory can interact with each other at a distance, leading to

a unified semantic space in the system’s memory.

The activation state of each DC can be influenced by the

surrounding DCs. Each DC is connected to surrounding

DCs through zeroes and ones. When a DC gets activated

from the patch, a strength number is assigned to it (SDC =

y).Then it would stimulate DCs that are connected to its

zeroes (SDC = y + 1), which is a union, (DC 25 (011001)

would stimulate DC 57 (111001), DC 29 (011101), and DC

27 (011011). The reason for that is that the more abstract

DC would contain the activated DC as well as others. The

activated DC would also inhibit the DCs connected to it

through ones (SDC = y - 1), which is a meet of simpler

patterns (DC 25 would inhibit DC 9 (001001), DC 17

(010001), and DC 24 (011000)).

 In order not to lose information about the original

pattern, each activated DC would memorize APN in a

matrix P(APN, DCN), with a maximum P(127, 127). The

first 127 represent the possible APNs, and the second

represents possible positions at which this DC was located

in a patch (for example, if DC 25 occurred at binary place 1,

4 and 64(center) in a given patch DCN would be 69).

NODES
As this still leaves the patterns dispersed across MU

complex and does not give them a context or unify them,

further joining into hash like node boxes is achieved through
Inner nodes (IN) and Outer nodes (ON) that are activated by
DCs as shown in Figure 7.
 Each DC has a ‘bottom’ and a ‘top’ side. For example, if

a DC were pictured as a coin, one would call the topside

head and the bottom side tail. An inside node (IN) can be

considered as an octahedron formed from the DC heads

facing it, and an outside node (ON) as an octahedron formed

from the tails side facing it.

Figure 7

The network formed from INs can be considered a hole in a

Swiss cheese, and the network formed by ONs as a cheese

itself. The INs would create forms, and ONs the surround in

which those forms were created. In order not to limit the

number of memories that this system can hold, a double

system of INs and ONs interact separately with their

neighboring INs or ONs in a handshake manner (querying

the adjacent IN/ON if it is active, and if so activating that

binary place in its number structure), memorizing patterns

of interactions and creating networks that would represent

each possible input pattern.
 One MU contains 8 IN nodes (labeled from 000 to

111 following the xyz 3D scheme), and each node is
activated by 8 DCs. Each group of DCs activating a given
node has a maximum binary distance of 2 as well as three
identical binary positions in all 8 DCs of that group. It is an
equivalent of a hash code for some missing and some present
binaries (for example IN 001 is activated by 8, 9, 10,11, 24,
25, 26 and 27, and in all of them binary 4 and 32 are zero,
and binary 8 is 1). Table 2 shows all 8 INs with same binary
positions in all the DCs that activate them.

IN Binary

32

Binary

8

Binary

4

000 0 0 0

001 0 1 0

010 1 0 0

011 1 1 0

100 0 0 1

101 0 1 1

110 1 0 1

111 1 1 1

Table 2

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.69 e-ISSN: 2251-7545

459

The MU structure also forms 8 ON nodes (also labeled from

000 to 111 following the xyz 3D scheme), and each node is

activated by a different set of 8 DCs. The DCs activating

each ON node are different from the INs, and also exhibit

the presence and absence of certain binaries, as seen in

Table 3.

ON Binary
16

Binary
2

Binary
1

000 0 0 0

001 1 0 0

010 0 1 0

011 1 1 0

100 0 0 1

101 1 0 1

110 0 1 1

111 1 1 1

Table 3

 These groupings create passive analysis of input patterns,

and represent ‘archetypes’ of the input that also allows

recognition of variations within limits. For example; IN 011

means that binary position 8 and 32 are ‘present’, and binary

position 4 is ‘absent’, which points to 8 possible DCs being

activated (40, 41, 42, 43, 56, 57, 58, 59). If ON 101 is also

activated, that means that binary position 1 and 16 are

‘present’ and binary position 2 is ‘absent’. Presence of both

IN 011 and ON 101 limits the basic pattern to 57 (111001).

Therefore, if the input came from another module as a

pattern of INs and ONs, the recall of the original input is

guaranteed.

 Each node has binaries associated with each one of its

faces, which is connected to specific DCs. This permits each

node to calculate its DC activation number (DCA). For

example, if IN 011 gets stimulated by DC 43, 56 and 59

(which correspond to binary places 8, 16 and 128), the DCA

for IN 011 would be 152 (see Figure 8).

Figure 8

In the above example of IN O11, the corresponding ONs

activated by DC 43, 56 and 59 would be ON 001, ON 110

and ON 111 (see Figure 9).

Figure 9

 The ON nodes activated by DCs change from 0 to 1 their

binary positions connected to DCs. In a given example ONs

activated by DCs connected to IN 011 are all activated in

ON's binary position 64, therefore the DCA for each

activated ON in this case will be 10111111 = 191.

 Each node also connects with 6 other nodes through

binary numbers (two of each kind in each given direction).

For example IN 011 connects to IN 001 through binary 2

and 16, to IN 010 through binary 1 and 8, and to IN 111

through binary4 and 32, as shown in Figure 10.

Figure 10

 The IN nodes register ‘forms’, and ON nodes the

‘surround’ in which those forms were created. Thus the

same form can belong to different surrounds. For example,

IN 011 has a surround of 8 ON nodes that are activated by

the IN 011 DCs. The possible activations of IN 011 by DCs

are 256, therefore creating 256 possible surrounds if the

ONs are activated only by IN 011. Yet, as other INs can also

activate the ONs, that increases the possible surrounds to

256
8
 for any given IN node.

 When an IN node is activated by DCs, it sends a

handshake-query to its 6 surrounding IN nodes. If the

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.69 e-ISSN: 2251-7545

460

surrounding node is active it answers the query and an

information link is opened between the two nodes. When

the node receives the answers to its handshake query, it

establishes a node activation number (NA). In this example

IN 011 could have:

NA0 = 01 + 12 + 04 + 08 + 016 + 032 = 2.

 The nodes send their NA to surrounding active nodes,

and receive NAs from them. In this example we assume that

only IN 001 in binary position 2is active. The NA0

represents NA of the IN 011 node itself, and NA2 the

received NA from binary position 2. Let us assume NA2 = 7

(that is IN 001 has an active connection with IN 011 in

binary position 2, with IN 000 in binary position 1, and with

IN 101 in binary position 4).

 Connection between two nodes is set in a strength

variable WX (where x represents the binary position link

between the two nodes) equal to the sum of the two NAs.

WX = NAx + NAy

In this example IN 011 W2 = 2 + 7 = 9. W1, W4, W8, W16and

W32 would all be 0 because the surrounding INs are not

active.

 WX variable sets the duration during which the

information link between the two nodes remains opened,

depending on the number of binary 1s present. In this

example W2= 3 clock cycles (000111).

 The WXs are added together by the node into a total

connection number (WT), which represents the state of

activation of surrounding nodes.

WT = ∑WX

In this example IN 011’s WT = 01 + 92 + 04 + 08 + 016 + 032

= 9. An additional Identity number (ID) is calculated by the

node (ID = DCA + NA), which represents total activation of

the node by DCs and by its surrounding nodes. In this

example ID for IN 011 = 10 (see Figure 11). The binary

connection between two nodes exchange their ID numbers,

so that in a recall memorized networks and their variations

can be reformed. These numbers are memorized in a 3D

matrix position MIN(DCA, NA, (WT, ID)) where most of the

matrix will have zero value (sparse coding). In this example

MIN(8, 2, (9,10)), would be memorized, representing the

state of activation of the node and its surroundings.

 The MIN matrix would store information only until the

arrival of next IX inputs, and then would erase it. This is

equivalent to short-term memory. If, during the IX inputs,

the same position is triggered again, that position’s memory

becomes permanent. The same system would be used for

MON matrix. Any repetition of these numbers increases the

strength of that memory position by the number of

memorized variations in MIN(DCA, NA) position.

In a sequence of events, those matrix positions can record

the consecutive states, thus anticipating what the nextstate

should be.

NETWORKS

 The eight IN nodes belonging to one MU, stimulated by

the input patch in this example, would be activated as

follows: the IN 000 would be activated by DC 19, which

gives DCA = 128; IN 001 would be activated by DC 27,

which gives DCA = 128; IN 010 would not be activated; IN

011 would be activated by DC 43, which gives DCA = 8

(see Figure 8); IN 100 would be activated by DC 22 and 23,

giving DCA = 192; IN 101 would be activated by DC 30,

giving DCA = 64; IN 110 and IN 111 would not be

activated. The IN-nodes-network is shown in Figure 11,

along with DCA, NA and WX values.

Figure 11

 There are 27 ON nodes surrounding the IN-nodes-set of

one MU, arranged in three vertical layers of 9 nodes (Back,

Middle and Front layers). A Back ON node can be in Top,

Middle or Bottom row, and on Left, Middle or Right

position in the row. Therefore, in order to specify each ON

node a subscript initials will be used (layer, row, position).

For example ON 011BTL indicates an ON 011 node found in

Back layer, Top row, and Left position (Figure 12).

Figure 12

 In order to ‘tie’ all the active ONs together and create a

‘container’ enclosing the activated INs, the ONs inhibited

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.69 e-ISSN: 2251-7545

461

directly by DCs change their binary activation 63 (111111)

to 0 (000000), and then send a query to all surrounding ONs

through its binary 0s. The connections between ON nodes

through binary 1s create a unified background around IN

network.

 If the ON receiving a query in a given binary position

has 1, it changes it to 0 and forwards the query through the

rest of binary 1 positions. If the ON receives a query in a

binary position 0 it establishes a WX connection with the

querying ON, and stops query propagation. This indicates

that the loop has been closed, or that different but separated

parts of IN network have been joined (see Figure 13).

Figure 13

 When a node receives and sends information from the

same binary direction in the same time period, it forms a WX

connection with that node. For example, ON 111BBM sends a

query to ON 011BBR, through a binary 1 position, at time t2,

and ON 011BBR sends the query to ON 111BBM at the same

time. As they both have 0 in that position, the W1 is set. This

way a ‘container’ is created, a container that can

accommodate variations of IN activation.

 The spread of activation in this example is done in

several time units. At time 1 (t1) the ONs that are inhibited

by DCs change their binary 63 to 0. At time 2 (t2) the

‘inhibited’ ONs send a query through their binary zeroes to

surrounding ONs. ONs activated at t2 change query

receiving binary position to 0 and forward a query to ONs

through remaining binary 1s at time 3 (t3), and so on.

 ONs whose 2 or more binary positions are changed to

zero in the same time period stop the propagation of the

query, and create WX with querying ONs. The 2 zeroes

threshold was chosen because it means that input to the

node came from two different directions, therefore that node

would join the querying ONs by establishing a WX

connection with them, making a path from one activated

node to another. White octagons (Figure 14) are octagons

inhibited through DCs and the red lines represent WX

between partially inhibited ONs.Each inhibited ON would

memorize a matrix MON(DCA, NA, (WT, ID)) in the same

way as IN nodes.

Figure 14

 In this example the calculations for ‘container’ stopped at

27 ONs surrounding the eight INs of the MU stimulated by

the example patch. Actually the connections of ONs go

beyond one MU considered here, and extend throughout the

MU-complex, joining through a shortest path ‘container’

network of the whole input field.

LEARNING

What would occur if the next input were slightly different

(Figure 15) or very different (Figure 16)?

(6/42 = 14% difference) (16/42 = 38% difference)

Figure 15 Figure 16

 The resulting IN network for a slightly differentpattern

is identical to the original IN network with 0% difference,

but the ON network is different, as shown in Figure 17.

(15/29 WX, 52% difference)

Figure 17

 The resulting IN network for very different pattern

(Figure 18) is very different from the original IN network.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.69 e-ISSN: 2251-7545

462

(0/5 WX, 100% difference)

Figure 18

The ON network is also substantially different from the

original as shown in Figure 19.

(20/29 Ws, 69% difference)

Figure 19

OUTPUT

 Each module formed by input layer, hidden layer(s) and

MU complex can compare subsequent inputs with the stored

memory, without anything beyond itself. With further

development, this system is ideal for learning ‘meanings’ of

any given pattern.

 This module can translate IN and ON networks into a

new input layer for another module. As each IN or ON node

has 6 neighbors, each node can be represented as a hexagon.

As nodes have specific positions in MU complex, the

hexagons can be placed in specific patch positions in the

new node input/output layer (NIOL), where IN nodes are

surrounded by 6/8 ON nodes for each IN node, and the

missing nodes can be reconstructed from the given

information. The inputs from NIOL focus the search, and

can compare it to the simultaneous input from the input

layer of the same module. With slightly adjusted software in

different modules, this complex system of modules would

allow for analysis of information processing, i.e. what a

particular pattern at a particular level ‘represents’.

CONCLUSION

 How would this system explain the visual experience

mentioned in the introduction? A given input would create a

decentralized-‘pixilated’-memory stored in IN and ON node

networks, DCs and PCs. With learning from inputs of

similar type, ‘archetypal’ IN and ON networks would be

memorized that would expect ‘something’ in a given

information slot.

A given input could stimulate many archetypal networks

simultaneously, which would then compete, and only some

‘archetypes’ would stay active. They would fixate parts that

fit together, and query for further fitting parts in expected

positions. If those spaces did find valid choices from local

memory, they would stabilize the whole IN/ON network

complex, almost like chaotic attractors, thus ‘recognizing’

the meaning of that pattern.

As many patterns can be stored, and as asynchronous

functioning is acceptable, it can form new unlearned

patterns from many previously learned patterns when

simultaneously activated by an input. That leads to a

machine equivalent of “insight”, and opens the door to an

autonomous learning machine. “Self-reflection” which is

necessary for formation of “meaning” (ability to answer an

internal query about a given pattern by associating it with

existing network memories) is inherent in this system.With

extension of this system through other modules, ideas could

be represented by patterns of activation, and a ‘common

sense’ machine could be made.During development of this

system new valuable insights could be made to the way

brain networks work.

 I am aware that many attempts have been made in AI to

develop such a system (with limited success), but none of

them (to my knowledge) were based on networks,

distributed memory and distributed decision-making that

was described in this article. I hope that some of the readers

of this article will be willing to join me in my effort to fully

develop this system. If you are interested, please contact me

at the email provided for this article.

REFERENCES

[1] Ben Goertzel, “The Hidden Pattern,” ISBN 1-58112-989-0

[2] Douglas Hofstadter, “Fluid Concepts and Creative Analogies,
computer Models of the Fundamental Mechanisms of Thought,”
Basic Books 1995, ISBN 0-465-02475-0

[3] Douglas Hofstadter, “Gödel, Escher, Bach: An Eternal Golden
Braid,” Penguin Books 1980

[4] “Proposal for Parallel Computer Architecture of a cellular type
aimed at development of an autonomous learning machine,”
UKSim2012

[5] Pentti Kanerva, “Sparse Distributed Memory,” MIT Press 1988

[6] Lee Middleton, Jayanthi Sivaswamy, “Hexagonal Image
Processing, A Practical Approach,” Springer 2005

[7] Dominic Widdows, “Geometry and Meaning,” CSLI
Publications 2004

[8] Stephen Wolfram, “A New Kind of Science,” ISBN 1-57955-
008-08

