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Abstract— At some point or another, everyone has surely had 

the experienced of, staring at mottled surroundings without 

any thought in mind and finding how one’s visual system 

started detecting patterns - like faces or animals or objects – in 

the mottled background. Once those patterns have been 

detected, moreover, it becomes difficult to observe the mottled 

surroundings and not perceive the patterns without engaging 

in active repression. This spontaneous organization of input 

into recognizable molds starts with just a few patches of visual 

input that activate a schema that is already present in the 

memory structure. The visual system then queries the 

surrounding features to see if they fit into the activated 

schema, thus constructing a richer and more compelling 

pattern. Psychology would interpret this process as a 

Rorschach test that shows what our unconscious mind is 

primed to perceive at any moment.  

This type of experiences suggeststhat, in order for intelligence 

to emerge, controlled chaos is necessary. Self-feedback and 

multiple calculation points, each of which follows simple rules, 

permit the emergence of chaotic attractor-networks, which 

bring stability to a system, and which, if networked together 

can create intelligence. This paper describes a computational 

system that is capable of such a feat, depending only on a 

mechanical process that does not require thought or 

consciousness. The systemonly requires local processing units, 

their associated memory, and simple software that interprets 

its immediate environment, (that is, the activity of surrounding 

processing units). In order to be functional, such a system 

cannot limit itself to the simplest possible case (such as letters 

or simple geometric shapes), but must be able to process all 

types of input and form active networks out of it.  

The system described in the following article uses a fully 

parallel pattern-type language that can be used in multiple, 

easily joined modules, where each module can be used in 

processing a specific type of information. As it uses simple 

programs in each computing element, the information is easily 

integrated and debugged. Complex statistical models, which 

form the foundation of most current search and recognition 

algorithms, are not necessary in this system as it automatically 

uses simple search and recognition strategies at each 

computing component. 

(Based on U.S. Patent 7,426,500 and pending patent 

US13/117,176) 
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INPUTUNIT 

     The basic component in this architecture is the 

Processing Cell (PC), a roughly hexagonal structure in with 

one central hexagon (H
(level)

 – the colored cells in Figure 

1)connects with the 6 surrounding hexagons (h(binary)) in a 2-

dimensional hexagonal lattice. Each H
(level)

 is also connected 

to cells in higher – or lower-level lattices in which h(binary) of 

a PC in a higher-level layer are each connected to the  H
(level)

 

of a corresponding PC in the level immediately below it. 

Information is processed as it flows from a base-level Input 

Layer through to successive higher-level layers in which 

schemata of increasing generality are formed.Each PC is 

identified by its central hexagon address (for example 

PC000). 

 
Figure 1 

     In the input layer, the 6 h(binary) in each PC detect the 

stimulus covering their respective area of the input field (for 

example, light intensity in visual processing), and compare 

it to the threshold level that the stimulus must reach in order 

to change the h(binary)’s state from 0 to 1. If Xi and Yi 

represent the (x, y) coordinates of input pixels found in a 

rectangular input field (like photographic memory in digital 

cameras, or an internet page), N represents the number of 

those pixels in the area covered by a specific h(binary), and 

(Xi, Yi)represents each pixel’s activation status (0 or 1), The 
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stimulus intensity for h(binary)  can be represented as: 

 

S = (∑ (Xi, Yi))/N for i = 1 to N 

Given a threshold constant K, the value of h(binary) is set such 

that: 

If S ≥ K, 

Then h(binary) = 1 (Activated) 

Else h(binary) = 0 (Not activated) 

 

The values of the 6 peripheral hexagons in each PCare 

recorded its central hexagon (H
(level)

) using the following 

algorithm. Each peripheral hexagon in a given PC is 

assigned a unique binary identifier based on its position in 

the tile . As Figure 2 shows, starting with the hexagon at the 

top of the tile, each hexagon is identified by 2
K
, where K 

ranges from 0 to 5.  To record the pattern of activated 

hexagons in each PC, then, the activation value of each 

peripheral hexagon (1 or 0) is multiplied with the hexagon’s 

identifier (2
0
 through 2

5
 in base-ten notation), and the binary 

values for each all six hexagons are summed, resulting in a 

single six-digit binary value ranging from 000000 to 111111 

(i.e., 64 possibilities).  For any given value, each “1” 

indicates the activation of the peripheral hexagon 

corresponding to that place-holder, meaning that each 

specific binary value represents a specific spatial 

arrangement or pattern of activated peripheral hexagons in 

the PC. 

 
Figure 2 

     Each hexagon in the full hexagonal lattice, has its own 

unique identifier, as shown in Figure1.  These identifiers are 

3-digit decimal values in which the first two digits identify 

the central hexagon of each PC, and the last digit takes on 

the values 1-6 and identifies the peripheral hexagons in each 

PC, starting at the top of the tile and proceeding clockwise.  

     Figure 1 shows an arrangement of seven Processing 

Cells in the input layer along with their addresses (PC000, 

PC010, PC020, PC030, PC040, PC050, and PC060). Together, 

seven PCs together form a Patch (P
(level)

(address)) whose 

address is taken from the central PC’s address (in this case 

P
0

000). The Patch is a unit that sends and receives 

information from one Memory Unit (MU). The Memory 

Unit (MU000), which is described in detail below, has an 

address based on the Patch address, in this case 000.  

     The addressing system extends to surrounding patches, 

and with a further addition of binary places can extend to 

Patches-of-Patches as far as necessary. Lee Middleton and 

Jayanthi Sivaswamy have developed this Hexagonal Image 

Processing (HIP) numbering system, and the associated 

mathematics [6]. It permits representation of hexagonal 

images as vectors in which the ordering of elements (which 

excludes the central hexagons for each PC) is established by 

the unique identifiers for each hexagon, and the elements 

themselves hold the 0 (inactive) or 1 (active) values. 

     In the following example, the hexagons where the 

stimulus exceeds the threshold are represented by a color, 

and their binary number changes from 0 to 1. The central 

hexagon represents that pattern in a binary and a decimal 

form (see Figure 3). 

 
Binary form: 111010 

Decimal form: 58 

Figure 3 
     The two ways of representing this activated pattern are 

interchangeable. The decimal number represents its binary 

equivalent and is used more often for simplicity and greater 

readability, though both are presented because the binary 

representation allows for a direct reconstruction of the 

activated pattern. As noted earlier, this system’s architecture 

includes an input layer and an arbitrary number of 

hexagonal lattice processing layers (the algorithms 

operating in the input and higher-level layers differ, 

however).  To identify a specific hexagon in the system, the 

hexagon’s level is represented by a superscript (h
(y)

 for 

peripheral hexagons and H
(y)

 for the central hexagons in 

each Processing Cell; H
(0)

, for example, is a central hexagon 

in the input (0) layer.  The position of the hexagon on the 

layer is indicated by a subscript using the unique identifier 

discussed above.  This designation system allows us to 

precisely describe the connections between the input layer 

and higher-level processing layers. 

To begin processing the stimulus, the activation pattern 

from each PC in the input layer is sent by the central 

hexagons (H
0
x) to a uniquely associated hexagonal cell in 

the upper layer PC, such that each Patch of 7 PCs provides 

input to a single higher-level Processing Cell. In the 

example shown in Figure 4, the seven H
0
s (H000, H001, H002, 

H003, H004, H005, H006) send their output (PCO) to the 

associated hexagon in the higher-level lattice (in a sense, it 

overlaps the lower-level PC). 
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Figure 4 

 

Upper level 

binary 
position 

Lower level 

PC output 
(PCO) 

Lower 

level Hx 
address 

Initial 

activation 
threshold  

Initial 

Upper 
level 

activation  

H1
000 27  000 1/6 1 

h1
001 23  060 1/6 1 

h1
002 30  010 1/6 1 

h1
003 01  020 1/6 1 

h1
004 19  030 1/6 1 

h1
005 22  040 1/6 1 

h1
006 42  050 1/6 1 

Total 

number of 1s 

in the input 

23 Average 
activation 

23/7= 3 

Revised 
activation 

threshold: 

3/6 

Initial 
APN: 127 

Revised 

APN: 123 

Table 1 

     The processing of input in this layer is, however, 

different than that in the input layer.  Specifically, the 

higher-level Processing Cell engages in an iterative process 

in which only the strongest signals of the input Patch are 

retained.  Initially, each hexagon in PC
1
000 (including the 

central hexagon H1
000) determines whether the number of 

activated hexagons in its associated lower-level PC
0
x meets 

its activation threshold, which is initially set at 1/6. In Table 

1, all of the inputs PC
0
x have at least one activated hexagon, 

meaning that all the upper-level PC’s cells are activated. 

     To extract more information from the signal, however, 

H
1

000 resets the activation threshold for the whole PC using 

the following algorithm.  It averages the total number of 

activated hexagons in the input layer Patch, rounding to the 

nearest whole number.  For the input in Table 1, this results 

in a new threshold of 3, which results in the deactivation of 

h
1

003, since the associated PC
0
 only had one activated 

hexagon. 

Once the the activation threshold is adjusted, the upper layer 

PC (in this case, PC
1

000) switches from an Input Mode to an 

Output Mode, and creates an Active Patch Number (APN) 

showing which PC
0
s activated its component hexagons. The 

APN of PC
1
000, in this case 123 (1111011), is formed by 

adding the binary positional representations of its activated 

hexagons, ranging from h
1

001 (1, or 000001) to h
1

006 (32, or 

111111) and H
1
000 (64, or 1000000). Each APN, then, is 

associated with a unique activation pattern for PC
1
000.  The 

APN for each higher-level PC is then sent for storage to a 

dedicated Memory Unit (MU), which is described in the 

following section. 

 

MEMORY UNIT 

Each MU is composed of 64 Dedicated Cells (DC), where 

each DC corresponds to a unique PC
0 

activation pattern 

(primitive). These DC primitives are shown in an 

“exploded” form in Figure 5. All seven hexagonal cells in a 

PC
1
 send output to their associated MU in the following 

format: PCO
0
 / APN / H

1
xbinary positionx. H

1
000, for 

example, would send 27/123/000,or in binary form 

011011/1111011/000, to all MU’s DCs in a binary position 

000 (center of each DC number), whereas h
1
001 would send 

23/123/000 to binary position 001, or in binary form 

010111/1111011/000. Each DC is only activated (activation 

status set to 1 instead of 0) if the first 6 bits of at least one 

input number correspond to its number (the yellow 

hexagons in Figure 5 represent activated DCs). The 

activating numbers are stored in the DC’s binary place, 

which is the same as the binary position of sending PC in 

the patch. 

 

 
Figure 5 

The key innovation in this memory system is the 3D 

structuring of the MU, which can be visualized as a set of 8 

truncated octahedrons connected at their truncation planes 

(see Figure 6, which shows three MU and how they would 

connect in the horizontal plane).  This yields 64 hexagonal 

surfaces, which correspond to the 64 DCs, and can be 

thought of as equivalent to the H
0
x’s in the associated input 

layer Patch.  Specifically, the edges of each DC correspond 

to a unique digit’s place and activation status in the 6-digit 

binary number associated with the activation pattern the DC 

corresponds to.  The activation state of this digit is 

preserved across DCs, such that each shared hexagonal 

border in the MU represents either a 1 or a 0.  The 

implication of this is that each DC hexagon connects only 

with DCs whose PC
0
 activation pattern numbers differ only 

in one binary place. For example: the hexagon containing 
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number 30 (011110) would connect to the hexagons 

representing numbers 31 (011111), 28 (011100), 26 

(011010), 22 (010110), 14 (001110), and 62 (111110)(see 

Figure 6). 

 
Figure 6 

The ends of each MU attach to other MUs corresponding to 

the Patches that surround the original patch (H
0

000) in the 

input layer.  In effect, this transposes the 2-dimensional 

structure of the input field into a 3-dimensional memory 

representation (which, as is described below, is what allows 

the activation of previously stored “schemata” by related, 

but not identical input patterns).  In this case, for example, 

the patches H
0
100 and H

0
400 (see Figure 1) are represented by 

neighboring MUs in the y-axis direction, H
0

200 and H
0

500 in 

the z-axis direction, and H
0

300 and H
0

600 in the x-axis 

direction. As the set of MUs are expandable in 3D, allowing 

for the absorption of input from as large an input layer as 

necessary, and because no MU’s activation state is fully 

determined only by its own patch input (as described 

below), different sets of meaning structures in the overall 

memory can interact with each other at a distance, leading to 

a unified semantic space in the system’s memory. 

The activation state of each DC can be influenced by the 

surrounding DCs. Each DC is connected to surrounding 

DCs through zeroes and ones. When a DC gets activated 

from the patch, a strength number is assigned to it (SDC = 

y).Then it would stimulate DCs that are connected to its 

zeroes (SDC = y + 1), which is a union, (DC 25 (011001) 

would stimulate DC 57 (111001), DC 29 (011101), and DC 

27 (011011). The reason for that is that the more abstract 

DC would contain the activated DC as well as others. The 

activated DC would also inhibit the DCs connected to it 

through ones (SDC = y - 1), which is a meet of simpler 

patterns (DC 25 would inhibit DC 9 (001001), DC 17 

(010001), and DC 24 (011000)). 

     In order not to lose information about the original 

pattern, each activated DC would memorize APN in a 

matrix P(APN, DCN), with a maximum P(127, 127). The 

first 127 represent the possible APNs, and the second 

represents possible positions at which this DC was located 

in a patch (for example, if DC 25 occurred at binary place 1, 

4 and 64(center) in a given patch DCN would be 69). 

 

NODES 
As this still leaves the patterns dispersed across MU 

complex and does not give them a context or unify them, 

further joining into hash like node boxes is achieved through 
Inner nodes (IN) and Outer nodes (ON) that are activated by 
DCs as shown in Figure 7. 
     Each DC has a ‘bottom’ and a ‘top’ side. For example, if 

a DC were pictured as a coin, one would call the topside 

head and the bottom side tail. An inside node (IN) can be 

considered as an octahedron formed from the DC heads 

facing it, and an outside node (ON) as an octahedron formed 

from the tails side facing it.  
 

 
Figure 7 

The network formed from INs can be considered a hole in a 

Swiss cheese, and the network formed by ONs as a cheese 

itself. The INs would create forms, and ONs the surround in 

which those forms were created. In order not to limit the 

number of memories that this system can hold, a double 

system of INs and ONs interact separately with their 

neighboring INs or ONs in a handshake manner (querying 

the adjacent IN/ON if it is active, and if so activating that 

binary place in its number structure), memorizing patterns 

of interactions and creating networks that would represent 

each possible input pattern.  
 One MU contains 8 IN nodes (labeled from 000 to 

111 following the xyz 3D scheme), and each node is 
activated by 8 DCs. Each group of DCs activating a given 
node has a maximum binary distance of 2 as well as three 
identical binary positions in all 8 DCs of that group. It is an 
equivalent of a hash code for some missing and some present 
binaries (for example IN 001 is activated by 8, 9, 10,11, 24, 
25, 26 and 27, and in all of them binary 4 and 32 are zero, 
and binary 8 is 1). Table 2 shows all 8 INs with same binary 
positions in all the DCs that activate them. 
 

IN Binary 

32 

Binary 

8 

Binary 

4 

000 0 0 0 

001 0 1 0 

010 1 0 0 

011 1 1 0 

100 0 0 1 

101 0 1 1 

110 1 0 1 

111 1 1 1 

Table 2 
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The MU structure also forms 8 ON nodes (also labeled from 

000 to 111 following the xyz 3D scheme), and each node is 

activated by a different set of 8 DCs. The DCs activating 

each ON node are different from the INs, and also exhibit 

the presence and absence of certain binaries, as seen in 

Table 3. 
 

ON Binary 
16 

Binary 
2 

Binary 
1 

000 0 0 0 

001 1 0 0 

010 0 1 0 

011 1 1 0 

100 0 0 1 

101 1 0 1 

110 0 1 1 

111 1 1 1 

Table 3 

     These groupings create passive analysis of input patterns, 

and represent ‘archetypes’ of the input that also allows 

recognition of variations within limits. For example; IN 011 

means that binary position 8 and 32 are ‘present’, and binary 

position 4 is ‘absent’, which points to 8 possible DCs being 

activated (40, 41, 42, 43, 56, 57, 58, 59). If ON 101 is also 

activated, that means that binary position 1 and 16 are 

‘present’ and binary position 2 is ‘absent’. Presence of both 

IN 011 and ON 101 limits the basic pattern to 57 (111001). 

Therefore, if the input came from another module as a 

pattern of INs and ONs, the recall of the original input is 

guaranteed. 

     Each node has binaries associated with each one of its 

faces, which is connected to specific DCs. This permits each 

node to calculate its DC activation number (DCA). For 

example, if IN 011 gets stimulated by DC 43, 56 and 59 

(which correspond to binary places 8, 16 and 128), the DCA 

for IN 011 would be 152 (see Figure 8). 

 
Figure 8 

In the above example of IN O11, the corresponding ONs 

activated by DC 43, 56 and 59 would be ON 001, ON 110 

and ON 111 (see Figure 9).  

 
Figure 9 

    The ON nodes activated by DCs change from 0 to 1 their 

binary positions connected to DCs. In a given example ONs 

activated by DCs connected to IN 011 are all activated in 

ON's binary position 64, therefore the DCA for each 

activated ON in this case will be 10111111 = 191.   

     Each node also connects with 6 other nodes through 

binary numbers (two of each kind in each given direction). 

For example IN 011 connects to IN 001 through binary 2 

and 16, to IN 010 through binary 1 and 8, and to IN 111 

through binary4 and 32, as shown in Figure 10. 

 
Figure 10 

      The IN nodes register ‘forms’, and ON nodes the 

‘surround’ in which those forms were created. Thus the 

same form can belong to different surrounds. For example, 

IN 011 has a surround of 8 ON nodes that are activated by 

the IN 011 DCs. The possible activations of IN 011 by DCs 

are 256, therefore creating 256 possible surrounds if the 

ONs are activated only by IN 011. Yet, as other INs can also 

activate the ONs, that increases the possible surrounds to 

256
8
 for any given IN node. 

     When an IN node is activated by DCs, it sends a 

handshake-query to its 6 surrounding IN nodes. If the 
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surrounding node is active it answers the query and an 

information link is opened between the two nodes. When 

the node receives the answers to its handshake query, it 

establishes a node activation number (NA).  In this example 

IN 011 could have:  

NA0 = 01 + 12 + 04 + 08 + 016 + 032 = 2. 

     The nodes send their NA to surrounding active nodes, 

and receive NAs from them. In this example we assume that 

only IN 001 in binary position 2is active. The NA0 

represents NA of the IN 011 node itself, and NA2 the 

received NA from binary position 2. Let us assume NA2 = 7 

(that is IN 001 has an active connection with IN 011 in 

binary position 2, with IN 000 in binary position 1, and with 

IN 101 in binary position 4). 

     Connection between two nodes is set in a strength 

variable WX (where x represents the binary position link 

between the two nodes) equal to the sum of the two NAs.  

WX = NAx + NAy 

In this example IN 011 W2 = 2 + 7 = 9. W1, W4, W8, W16and 

W32 would all be 0 because the surrounding INs are not 

active. 

     WX variable sets the duration during which the 

information link between the two nodes remains opened, 

depending on the number of binary 1s present. In this 

example W2= 3 clock cycles (000111). 

     The WXs are added together by the node into a total 

connection number (WT), which represents the state of 

activation of surrounding nodes.  

WT = ∑WX 

In this example IN 011’s WT = 01 + 92 + 04 + 08 + 016 + 032 

= 9.  An additional Identity number (ID) is calculated by the 

node (ID = DCA + NA), which represents total activation of 

the node by DCs and by its surrounding nodes. In this 

example ID for IN 011 = 10 (see Figure 11). The binary 

connection between two nodes exchange their ID numbers, 

so that in a recall memorized networks and their variations 

can be reformed. These numbers are memorized in a 3D 

matrix position MIN(DCA, NA, (WT, ID)) where most of the 

matrix will have zero value (sparse coding). In this example 

MIN(8, 2, (9,10)), would be memorized, representing the 

state of activation of the node and its surroundings.  

     The MIN matrix would store information only until the 

arrival of next IX inputs, and then would erase it. This is 

equivalent to short-term memory. If, during the IX inputs, 

the same position is triggered again, that position’s memory 

becomes permanent. The same system would be used for 

MON matrix. Any repetition of these numbers increases the 

strength of that memory position by the number of 

memorized variations in MIN(DCA, NA) position.  

In a sequence of events, those matrix positions can record 

the consecutive states, thus anticipating what the nextstate 

should be. 

NETWORKS 

     The eight IN nodes belonging to one MU, stimulated by 

the input patch in this example, would be activated as 

follows: the IN 000 would be activated by DC 19, which 

gives DCA = 128; IN 001 would be activated by DC 27, 

which gives DCA = 128; IN 010 would not be activated; IN 

011 would be activated by DC 43, which gives DCA = 8 

(see Figure 8); IN 100 would be activated by DC 22 and 23, 

giving DCA = 192; IN 101 would be activated by DC 30, 

giving DCA = 64; IN 110 and IN 111 would not be 

activated. The IN-nodes-network is shown in Figure 11, 

along with DCA, NA and WX values. 

 
Figure 11 

 

     There are 27 ON nodes surrounding the IN-nodes-set of 

one MU, arranged in three vertical layers of 9 nodes (Back, 

Middle and Front layers). A Back ON node can be in Top, 

Middle or Bottom row, and on Left, Middle or Right 

position in the row. Therefore, in order to specify each ON 

node a subscript initials will be used (layer, row, position). 

For example ON 011BTL indicates an ON 011 node found in 

Back layer, Top row, and Left position (Figure 12).  

 
Figure 12 

     In order to ‘tie’ all the active ONs together and create a 

‘container’ enclosing the activated INs, the ONs inhibited 
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directly by DCs change their binary activation 63 (111111) 

to 0 (000000), and then send a query to all surrounding ONs 

through its binary 0s. The connections between ON nodes 

through binary 1s create a unified background around IN 

network. 

     If the ON receiving a query in a given binary position 

has 1, it changes it to 0 and forwards the query through the 

rest of binary 1 positions. If the ON receives a query in a 

binary position 0 it establishes a WX connection with the 

querying ON, and stops query propagation.  This indicates 

that the loop has been closed, or that different but separated 

parts of IN network have been joined (see Figure 13). 

 
Figure 13 

     When a node receives and sends information from the 

same binary direction in the same time period, it forms a WX 

connection with that node. For example, ON 111BBM sends a 

query to ON 011BBR, through a binary 1 position, at time t2, 

and ON 011BBR sends the query to ON 111BBM at the same 

time. As they both have 0 in that position, the W1 is set. This 

way a ‘container’ is created, a container that can 

accommodate variations of IN activation. 

     The spread of activation in this example is done in 

several time units. At time 1 (t1) the ONs that are inhibited 

by DCs change their binary 63 to 0. At time 2 (t2) the 

‘inhibited’ ONs send a query through their binary zeroes to 

surrounding ONs. ONs activated at t2 change query 

receiving binary position to 0 and forward a query to ONs 

through remaining binary 1s at time 3 (t3), and so on.  

      ONs whose 2 or more binary positions are changed to 

zero in the same time period stop the propagation of the 

query, and create WX with querying ONs. The 2 zeroes 

threshold was chosen because it means that input to the 

node came from two different directions, therefore that node 

would join the querying ONs by establishing a WX 

connection with them, making a path from one activated 

node to another. White octagons (Figure 14) are octagons 

inhibited through DCs and the red lines represent WX 

between partially inhibited ONs.Each inhibited ON would 

memorize a matrix MON(DCA, NA, (WT, ID)) in the same 

way as IN nodes.  

 
Figure 14 

     In this example the calculations for ‘container’ stopped at 

27 ONs surrounding the eight INs of the MU stimulated by 

the example patch. Actually the connections of ONs go 

beyond one MU considered here, and extend throughout the 

MU-complex, joining through a shortest path ‘container’ 

network of the whole input field. 

LEARNING 

What would occur if the next input were slightly different 

(Figure 15) or very different (Figure 16)? 

 
(6/42 = 14% difference) (16/42 = 38% difference) 

Figure 15                    Figure 16 

      The resulting IN network for a slightly differentpattern 

is identical to the original IN network with 0% difference, 

but the ON network is different, as shown in Figure 17. 

 
(15/29 WX, 52% difference) 

Figure 17 

     The resulting IN network for very different pattern 

(Figure 18) is very different from the original IN network. 



                           The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 

San Francisco State University, CA, U.S.A., March 2013 

Doi: 10.7321/jscse.v3.n3.69         e-ISSN: 2251-7545 

 

462 

 

 
(0/5 WX, 100% difference) 

Figure 18 

The ON network is also substantially different from the 

original as shown in Figure 19. 

 
(20/29 Ws, 69% difference) 

Figure 19 

OUTPUT 

     Each module formed by input layer, hidden layer(s) and 

MU complex can compare subsequent inputs with the stored 

memory, without anything beyond itself. With further 

development, this system is ideal for learning ‘meanings’ of 

any given pattern. 

      This module can translate IN and ON networks into a 

new input layer for another module. As each IN or ON node 

has 6 neighbors, each node can be represented as a hexagon. 

As nodes have specific positions in MU complex, the 

hexagons can be placed in specific patch positions in the 

new node input/output layer (NIOL), where IN nodes are 

surrounded by 6/8 ON nodes for each IN node, and the 

missing nodes can be reconstructed from the given 

information. The inputs from NIOL focus the search, and 

can compare it to the simultaneous input from the input 

layer of the same module. With slightly adjusted software in 

different modules, this complex system of modules would 

allow for analysis of information processing, i.e. what a 

particular pattern at a particular level ‘represents’.  

CONCLUSION 

     How would this system explain the visual experience 

mentioned in the introduction? A given input would create a 

decentralized-‘pixilated’-memory stored in IN and ON node 

networks, DCs and PCs. With learning from inputs of 

similar type, ‘archetypal’ IN and ON networks would be 

memorized that would expect ‘something’ in a given 

information slot. 

A given input could stimulate many archetypal networks   

simultaneously, which would then compete, and only some 

‘archetypes’ would stay active. They would fixate parts that 

fit together, and query for further fitting parts in expected 

positions.  If those spaces did find valid choices from local 

memory, they would stabilize the whole IN/ON network 

complex, almost like chaotic attractors, thus ‘recognizing’ 

the meaning of that pattern.  

As many patterns can be stored, and as asynchronous 

functioning is acceptable, it can form new unlearned 

patterns from many previously learned patterns when 

simultaneously activated by an input. That leads to a 

machine equivalent of “insight”, and opens the door to an 

autonomous learning machine. “Self-reflection” which is 

necessary for formation of “meaning” (ability to answer an 

internal query about a given pattern by associating it with 

existing network memories) is inherent in this system.With 

extension of this system through other modules, ideas could 

be represented by patterns of activation, and a ‘common 

sense’ machine could be made.During development of this 

system new valuable insights could be made to the way 

brain networks work. 

     I am aware that many attempts have been made in AI to 

develop such a system (with limited success), but none of 

them (to my knowledge) were based on networks, 

distributed memory and distributed decision-making that 

was described in this article. I hope that some of the readers 

of this article will be willing to join me in my effort to fully 

develop this system. If you are interested, please contact me 

at the email provided for this article. 
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