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Abstract—Electimize is a new evolutionary algorithm (EA) 

algorithm that was introduced to overcome some limitations of 

existing evolutionary algorithms. Electimize simulates the 

phenomenon of the electrical current conductivity through the 

representation of solution strings as wires in closed electric 

circuits. Unlike some EAs, Electimize has the ability to assess 

the quality of each value in the solution string independently. 

The assessment of values in potential solution is based on 

Ohm’s law and Kirchhoff’s rule.  

One of the primary objectives of developing Electimize is to 

devise additional capabilities that would enable the algorithm 

to solve a wide range of discrete optimization problems. 

Specifically, this paper aims to: 1) assess the capabilities of the 

algorithm in solving a challenging class of discrete optimization 

problems, namely, NP-complete optimization problems, 2) 

compare the performance of Electimize to other EAs that were 

used to solve this class of problems. For this purpose, an 

instant (Bayg29) of the traveling salesman problem (TSP) was 

selected for the testing, application and comparison purposes. 
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I.  INTRODUCTION  

Due to the limitations of some of the existing 
evolutionary algorithms (EAs),  the main objective of 
developing Electimize was to devise an optimization 
algorithm with capabilities higher than those of existing EAs 
[1, 2, 3]. These capabilities includes three main aspects:      
1) the ability to assess the quality of each value available in 
the solution space independently from other values in the 
solution string; 2) the ability to extensively search the 
solution space, and identify optimal and alternate optimal 
solutions –if any; and 3) the ability to solve a wide range of 
discrete optimization problems [1, 4, 5]. 

Previous studies demonstrated that Electimize has an 
outstanding performance when it comes to solving static and 
dynamic NP-hard combinatorial optimization problems. In 
fact, Electimize has notably outperformed many of the 
current EAs that are commonly used in solving these 
problems [6, 7]. The capability of the algorithm to 

independently assess the quality of each value of the solution 
string was investigated and demonstrated thoroughly [1, 3, 6, 
7]. This unique capability enables the algorithm to 
effectively converge towards the optimal values, as 
demonstrated by investigating the change in the probability 
of selection of different decision variable values that showed 
incremental convergence towards the optimal solution(s) [3]. 
The capability of Electimize to extensively search the 
solution space was also demonstrated by the algorithm 
capacity to identify several alternate optimal solutions 
throughout experimentation [1, 3]. Electimize is also 
enhanced with a number of internal processes that supports 
the rapid convergence toward optimal solutions compared to 
other EAs [4, 5], as will be demonstrated later in this paper. 
The role of these internal processes was most remarkable in 
determining the optimal solutions of a benchmark time-cost 
tradeoff problem after the first iteration [6], and in 
identifying a new optimal solution for a benchmark site 
layout planning problem [7].  

Despite the notable performance of Electimize in solving 
various classes of combinatorial optimization problems, it is 
deemed essential to further investigate its performance in 
solving the NP-complete optimization problems.  

NP-complete optimization problems are the hardest 
problems in the NP-hard class.  If a polynomial-time 
algorithm can solve an NP-complete problem, then it should 
solve other NP-hard problems in this class in a polynomial 
time [1, 8]. A very well-known example of the NP-complete 
problem is the traveling salesman problem.  In this paper, an 
instance of the traveling salesman problem (Bayg29) was 
selected for testing and application purposes.  

Probably the traveling salesman problem (TSP) is the 
most famous and most attempted combinatorial optimization 
problem.  The TSP is the problem of finding the shortest tour 
among a number of cities in a given set. The TSP can have 
different objectives. The objective can be finding: 1) Shortest 
travel distance, 2) Shortest travel time, or 3) Least travel cost 
between a number of cities. TSPs vary in size (number of 
cities), and symmetry.  

The research literature for the TSP is huge due to the 
generic nature of the problem, its application in various 
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engineering field, and its utilization as a benchmark problem 
for testing mathematical optimization models and EAs [9, 
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].  

II.  ELECTIMIZE: ALGORITHM AND INTERNAL PROCESSES 

Electimize simulates the phenomenon of the flow of 
electrons in an electric circuit, where the wire with the least 
resistance has the maximum flow and the highest electric 
intensity [1, 3, 4, 5, 6, 7]. In Electimize, a feasible solution is 
represented by an electric wire. The simulation starts by a 
random fabrication of a population of N wires .  Each wire 
(Wn) is composed of a number of segments (M) that 
represent the decision variables. Each segment (m) is 
assigned a value (lnm) from the range of the relevant decision 
variable. Each assigned value is assumed to have a local 
resistance (rnm) that pertains to its quality and relates to the 
physical characteristics of the segment (resistivity, cross-
sectional area, and length). The fabricated wires are then 
connected in parallel to a  source of electricity with voltage 
(V), a value determined by Electimize in order to 
differentiate between the qualities of different wires (Wn) [1, 
4, 5] .  

The quality of a solution (wire) is represented by its 
global resistance (Rn). The Global resistance is determined 
using Ohm’s Law (R= V/I). The local and global resistances 
obey Kirchhoff’s law, such that: at any time, the summation 
of the local resistances (rnm) of the values (lnm) of a single 
wire (Wn) should be equal to the global resistance (Rn) of the 
wire. . The intensity (In) of the electric current passing 
through each wire (wn) is determined by substituting the 
value (lnm) of each wire segment (m) in their corresponding 
optimization variable. Once the global resistance (Rn) is 
determined, the local resistances of segments (rnm) are 
initially calculated, according to (1). The algorithm assumes 
that, at first, all values of the same wire have the same 
quality since there is no available information about their 
qualities yet. The next step is to assess the quality (r*ml) of 
each value (lnm) in wire (Wn) independently. 

 n
nm

R
r

M
  

The wires are then ranked according to their global 
resistances (Rn). In a minimization problem, the goal is to 
find the wire with the maximum resistance (min In). The best 
wire (Wbest) in the population is then used to evaluate other 
wires  and is referred to as the control wire (CW). The top 5-
25% of the wire population are then selected to undergo a 
one-way sensitivity analysis to assess the quality of each 
value (lnm) independently. This is accomplished by 
substituting the value (lnm) of each wire segment (m) in its 
corresponding segment in the CW. The new intensity of the 
CW is then recorded, the change in the CW global 
resistances is calculated, and the local resistances (rml) are 
then modified accordingly as illustrated in  (2). The 
resistances (rml) are then updated, according to (3). The final 

step is the calculation of selection probability (Pml) based on 
the updated resistance of values, as shown in (4) – for 
maximization problems.  
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Where r*ml: modified resistance of value (l) occupying 
segment (m); rnm: resistance of value (lml) of segment (m) in 
the original wire (Wn); Rn: global resistance of wire (Wn); 
and RCW: resistance of the control wire. 


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Where r^ml: updated resistance for value (l) of segment (m), 
and rml: resistance for value (l) of segment (m) from the 
previous iteration. 
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Where Pml: probability that value (lml) is selected for segment 
(m). 

The above mentioned steps represent one iteration. At the 
end of each iteration, the wires are dismantled and parts are 
re-used to fabricate new wires. This process continues up to 
a specified number of iterations, and then terminates [1, 4, 5, 
6, 7].  

Electimize has a number of internal processes that 
enhance the search for optimal values in the solution space, 
and accelerates the rate of convergence. The first internal 
process is the decomposition of the local resistance (rnm) into 
its main parameters, according to (5).  

 ml
ml

ml

ρ b
r

a




 

Where, ρ: resistivity of wire material - for simplicity, 
ρ=1, aml: cross-sectional area of value (lm); and bml: length of 
value (lm) 

The cross-sectional area should represent a piece of 
information about the problem that is available beforehand 
and can guide the algorithm toward the optimal solution [1, 
4, 5]. If this information is available, then the selection 
probability will be calculated according to (6). The second 
internal process is the utilization of the Heat Factor (HF), 
where the resistances (rml) are multiplied by a HF (a value 
less than one) if selected more than a specified number of 
times set by the user. The utilization of the HF prevents 
premature convergence and allows for the extensive search 
of the solution space [1, 4, 5]. Another internal process is the 
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determination of the control wire (CW) for the sensitivity 
analysis step. For the majority of iterations (90-95%), the 
CW is selected as the best wire among the current population 
of wires. Toward the end of simulation, the CW is selected 
as the best wire identified in all iterations, a process that 
allows for identifying the global optimal and alternate 
optimal solutions. Also, during the sensitivity analysis 
process, the selected CW is replaced by any wire of a better 
quality generated during this step. This process of changing 
the CW is yet another form of internal evolution that 
contributes to the robustness of the algorithm. The main nine 
steps of the algorithm, along with the interactions occurring 
with different internal processes, are shown in Fig. 1. A 
detailed description of Electimize and its operation is 
available in the literature [1, 4, 5, 6, 7]. 
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III. MODELING THE TRAVELING SALESMAN PROBLEM 

(TSP) USING ELECTIMIZE 

In modeling the TSP using Electimize, N wires, each 
composed of M segments, are fabricated to represent 
possible tours. The number of segments (M) should 
correspond to the number of cities in the tour. For example, 
in a 14-city TSP, the wire will be composed of 14 segments.  
Each segment is randomly assigned a certain city in the tour, 
as shown in   Fig. 2. The tour always starts from a specified 
city and ends at same specified city. This means that the first 
and last segments of the wire will always have the same yet 
fixed indexes. The optimization objective is to find the tour 
with the minimum distance. The objective function is stated 
as follows: 

m

ij
j i 1

Minimize D:
 




where, Dij: distance between cities (i) and (j), and m: total 
number of segments in the wire. The travel distances 
between cities are known before hand and stored in the 
distance matrix. 

 
Segment

City

……………….1 5 4 7 12Wire (Wn) 9 1

 
Figure 2.   Wire representation of the traveling salesman problem 

The cross-sectional area (aml) was calculated as total 
distance of the tour, divided by the distance between any two 
cities in the tour, as shown in Fig. 3. 

 
 

Area 1 2 3 4 5 6 7 8 9

1 0 102/23=4.43 12/102=8.5 51.00 4.86 6.80 12.75 17.00 6.80

Area Matrix

Wn 1 ?

City

        j

i
1 2 3 4 5 6 7 8 9 Total

1 0 23 12 2 21 15 8 6 15 102

Segments

Distance Matrix

 
Figure 3.   Areas of decision variable vales for the first wire segment 

Electimize was coded using Visual Basic for Application 
as a macro in Microsoft Excel. A simple interface was 
developed for the user to input the data, including the 
number of iterations, number of wires, size of the instance, 
and number of wires performing the sensitivity analysis, as 
shown in Fig. 4. Separate multiple sheets were prepared to 
store distance matrixes and the output solutions. Various data 
were collected to trace and verify the logic in computation. 
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Figure 1.  Main steps of optimization and the interaction with different internal processes. 

 
Figure 4.   A simple user interface for the TSP using spreadsheets 

IV. EXPERIMENTATION AND RESULTS FOR THE 

BAYG29 TSP 

Bayg29 is a real-life benchmark symmetric TSP, with 
an objective of finding the optimal tour between 29 cities 
in Bavaria. The problem has 3.05 x 1029 possible solutions. 
The distances between cities are geographical. 

The algorithm was applied successfully and 
determined the optimal solution for the Bayg29 TSP 
(1,610 km) in 17 iterations using 500 wires and the top 50 
wires in each iteration for the sensitivity analysis (see Fig. 
5). The Control Wire was defined as the best wire 
identified in each iteration in 90% of the iterations, and the 

overall best wire in the remaining 10% of iterations. The 
resistance for each decision variable value (rml) is 
multiplied by a Heat Factor of 0.4, if the value is selected 
more than 5,000 times. The optimal tour and some of the 
sub-optimal tours identified are listed in Table I. From 
Table I, it can be noticed that some of the good wires have 
been evolving incrementally throughout the iterations and 
until the optimal solution is generated. 

V. COMPARISON WITH PREVIOUS RESULTS FOR 

BAYG29 TSP 

The results obtained by Electimize were compared to 
the most recent attempts made to solve the Bayg29 TSP. 
Shimomura et al. [21] introduced a modified version of 
Ant Colony Optimization (ACO) referred to as Ant 
Colony Optimization with Intelligent and Dull Ants 
(IDACO). They attempted Bayg29 TSP to compare the 
performance of their proposed algorithm (IDACO) and 
traditional ACO. Although they proved that IDACO 
outperforms ACO, both algorithms failed to reach the 
optimal solution of Bayg29. The best result obtained by 
IDACO had an error rate of 1.38% compared to an error 
rate of 2.49% of ACO. The error rate is calculated 
according to (6). The error rates given were used to 
calculate the tour lengths obtained, as shown in Table II. 
Another interesting observation is that some of the near-
optimal solutions identified by Electimize (see Table I) are 
better than the best values reported by IDACO, ACO, and 
GAs. This is also apparent in Fig. 5, which illustrates 
Electimize's high convergence rate demonstrated by the 
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dramatic drop in the error rate from 110.8% in the first 
iteration to 0.74% in the eleventh iteration.   


algorithm solution - optimal solution

Error Rate (%) =
optimal solution

 

In an attempt to compare the performance of GAs after 
the introduction of a new crossover method referred to as 
Sequential Constructive Crossover (SCX), Ahmed [22] 
selected to try the Bayg29 problem. The new crossover 
method proved to be more efficient as it reached the 
optimal solution (1,610 km), outperforming the original 
GA that had an error rate of 9.25%, as shown in Table 
II.Like SCX algorithm, Electimize was able to determine 
the optimal solution of the problem. Unfortunately, further 
data about SCX such as the convergence rate and the 
number of generations and chromosomes used is not 
available in the literature. This prevented further 
comparison between Electimize and SCX.  

VI. CONCLUSION 

This paper presents an assessment of Electimize 
performance in solving NP-complete combinatorial 
optimization problems. An instance of the traveling 
salesman problem (Bayg29) was selected for application; 
and Electimize was able to identify the optimal tour with a 
high convergence rate, as  illustrated by the results . The 
robustness of the algorithm is attributed to three main 
internal processes that enable it to extensively and 
efficiently search the solution space for the optimal 
solutions. This robustness is further illustrated by 
comparing the intermediate near-optimal values generated 
during the search to the final solutions obtained by other 
algorithms. Electimize proves to be an efficient tool for 
optimization and is capable of solving NP-complete 
optimization problems, the hardest class of NP-hard 
optimization problems.   

REFERENCES 

[1] M. Abdel-Raheem, Electimize: A New Evolutionary Algorithm for 
Optimization with Application in Construction Engineering. Ph.D 
Dissertation, College of Engineering and Computer Science, 
University of Central Florida, USA, 2011. 

[2] M. Abdel-Raheem, and   A. Khalafallah, “Framework   for   
a   Multi-Level Evolutionary   Algorithm   for   
Construction   Optimization,”   Proc.   of   the   23rd 
European Conf. on Modeling and Simulation (ECMS 
2009), June 2009. 

[3] A. Khalafallah, and M. Abdel-Raheem, “Electimize: A 
New Optimization Algorithm with Application in 
Construction Engineering,”   J. of Computing in Civil 
Engineering, vol. 25, 2011, pp. 192-202, 2011.  

 
[4] M. Abdel-Raheem, and   A. Khalafallah, “Introduction to a 

New Mechanism for Electimize,”   Proc.   of   UKSim   13th 
International Conference on Modeling and Simulation 
(UKSim2011), March 2011, pp. 8-13. 

[5] M. Abdel-Raheem, and   A. Khalafallah, “Modeling 
Combinatorial Optimization Problems Using Electimize,” Proc. of 
Conference on Systems Engineering Research (CSER 
2013), Georgia Institute of Technology, March 2013, in 
press. 

[6] M. Abdel-Raheem, and   A. Khalafallah,   “Using 
Electimize to Solve the Time-Cost-Tradeoff Problem in 
Construction Engineering,” Proc. of 2011 ASCE 
International Workshop on Computing in Civil 
Engineering, June 2011, pp. 250-257. 

[7] M. Abdel-Raheem, and   A. Khalafallah,  “Application of 
Electimize in Solving the Construction Site Layout Planning 
Optimization Problem,” Proc. of Construction Research Congress 
(CRC 2012), May 2012. 

[8] V. Blondel, and J. Tsitsiklis, “Complexity of stability and 
controllability of elementary hybrid system,” Automatica, vol. 35, 
1999, pp. 479-489. 

[9] G. Dantzig, R. Fulkerson, and S. Johnson, "Solution of a large-
scale traveling salesman problem," Operations Research, vol. 2, 
1954, pp. 393–410 . 

[10] D. Rosenkrantz, R. Stearns, and P. Lewis, "An Analysis of Several 
Heuristics for the Traveling Salesman Problem", SIAM Journal on 
Computing, 1977, pp. 563–581. 

[11] M. Garey, and D. Johnson, Computers and Intractability: A Guide 
to the Theory of NP-Completeness, W.H. Freeman, 1979 . 

[12] D. Shmoys, J. Lenstra, K. Rinnooy, and E. Lawler, The Traveling 
Salesman Problem: A Guided Tour of Combinatorial Optimization, 
John Wiley & Sons, 1985 . 

[13] D. Goldberg, Genetic Algorithms in Search, Optimization, and 
Machine Learning, Addison–Wesely Publishing Company, Inc., 
New York, 1989. 

[14] D. Johnson, and L. McGeoch, The Traveling Salesman Problem: A 
Case Study in Local Optimization, in L. Aarts, and J.  Lenstra, 
John Wiley and Sons Ltd, 1997 . 

[15] S. Arora, S. (1998), "Polynomial time approximation schemes for 
Euclidean traveling salesman and other geometric problems", J. of 
the ACM, vol. 5, 1988, pp. 753–782. 

[16] C. Walshaw, A Multilevel Approach to the Traveling Salesman 
Problem, CMS Press, 2000. 

[17] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, The traveling-
salesman problem: Introduction to Algorithms (2nd ed.), MIT Press 
and McGraw-Hill, 2001. 

[18] G. Gutin, A. Yeo, and A. Zverovich, "Traveling salesman should 
not be greedy: domination analysis of greedy-type heuristics for 
the TSP", Discrete Applied Mathematics, vol. 117, 2002. 

[19] G. Gutin, and A. Punnen, The Traveling Salesman Problem and Its 
Variations, Springer, 2006. 

[20] D. Applegate, R. Bixby, V. Chvátal, and J. Cook, The Traveling 
Salesman Problem: A Computational Study, Princeton University 
Press, 2006 . 

[21] S. Shimomura, M. Sugimoto, T. Haraguchi, H. Matsushita, and Y. 
Nishio , “Investigation of Ant Colony Optimization with 
Intelligent and Dull Ants,” Proc. of International Workshop on 
Nonlinear Circuits, Communication and Signal Processing 
NCSP'10, 2010, pp. 17-20.  

[22] Z. Ahmed, “Genetic Algorithm for the Traveling Salesman 
Problem using Sequential Constructive Crossover Operator,” Intr. 
J. of Biometric and Bioinformatics, Vol. 3, 2010, pp. 96-105. 

 

 
 
 



                           The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 

San Francisco State University, CA, U.S.A., March 2013 

Doi: 10.7321/jscse.v3.n3.54         e-ISSN: 2251-7545 

 

 

364 

 

1200

1450

1700

1950

2200

2450

2700

2950

3200

3450

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

Iteration

T
o

u
r 

D
is

ta
n

c
e

Figure 5.   Convergence of Electimize toward Optimal Solution for the Bayg29 TSP

Best Tours Identified by Electimize for Bayg29 

Tour  Distance % Error

I 1 28 6 12 9 26 3 29 5 21 2 20 10 4 15 18 14 17 22 11 19 25 7 23 8 27 16 13 24 1 1610 0.00%

II 1 28 6 12 9 26 3 29 5 21 2 20 10 4 15 18 14 17 22 11 19 25 7 23 27 16 13 24 8 1 1615 0.31%

III 1 28 6 12 9 26 3 29 5 21 2 20 10 4 15 18 14 17 22 11 19 25 7 23 27 8 24 16 13 1 1620 0.62%

IV 1 28 12 6 9 26 3 29 5 21 2 20 10 4 15 18 14 17 22 11 19 25 7 23 27 16 13 24 8 1 1622 0.75%

Best Tours for Bayg 29

 

TABLE I.  BEST TOUR VALUES IDENTIFIED BY DIFFERENT 

ALGORITHM FOR THE BAYG29 TSP 

Algorithm Best Solution % Error

Electimize 1,610 0.00%

IDACO 1,637 1.68%

ACO 1,650 2.48%

GAs (SCX) 1,610 0.00%

GAs 1,759 9.25%
 


