
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.53 e-ISSN: 2251-7545

351

A TunableWorkflow Scheduling AlgorithmBased
on Particle Swarm Optimization for Cloud

Computing
Jing Huang, Kai Wu, Lok Kei Leong, Seungbeom Ma, and Melody Moh

Department of Computer Science
San Jose State University

San Jose, CA, USA
Melody.Moh@SJSU.EDU

Abstract—Cloud computing uses a great amount of
heterogeneous resources to deliver countless different services to
users of distinctive quality of services (QoS) requirements.
Numerous diverse tasks need to be carried out to meet the vastly
different QoS and budget requirements. Workflow scheduling
is therefore critical for the success of large-scale cloud
computing. Particle Swarm Optimization (PSO) has been
adopted for workflow scheduling in cloud computing, yet most
existing works focused on a single objective. This paper
proposes a tunable fitness function for the PSO algorithm, based
on which a workflow schedule may be selected for minimal cost
or minimal makespan (completion time), or any level in
between. A heuristics is further proposed to address bottleneck
problems andattains a smaller makespan. Performance
evaluation and complexity analysis are both presented, which
show that the proposed algorithm surpasses the existing ones in
both cost and makespan while maintaining a reasonable load
balance and keeping the same time complexity. We believe that
the tunable fitness function-based PSO have many potential
applications in other soft computing and distributed computing
models.

Keywords: cloud computing, makespan, particle swarm
optimization (PSO), soft computing, workflow scheduling

I. INTRODUCTION
Cloud computing is a new paradigm for distributed

computing.Itdeliversa poolof abstracted,
virtualizedresources, including computing power, storage,
platforms and software applications over the Internet based
on users’ demand [1].Due to its many benefits such as
elastic, scalable resource provision and cost-effectiveness,
cloud computing has attracted a rapidly increasing number of
users.

Cloud computing offers a great variety of services. Based
on the level of services, they are generally divided into three
categories: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS). IaaS puts
servers, storage, networks, and data center fabrics together as
demanded by users. Cloud users can then install operating
system images and deploy their applications based on the
infrastructure. PaaS, on the other hand, provides middleware,
database and development tools. It enables users to deploy

applications onto a virtualized cloud platform [2]. Finally, in
SaaS the complete operating environment, along with
applications, management, and user interfaces, are provided to
cloud users [3]. Since all these services are made available as
subscription-based in a pay-per-use model, cloud computing
leverages many attractive features to users, including low cost
and simple management.

There are many technical challenges faced by cloud
providers, such as maintaining high utilization while
delivering services that arelow cost, short delay, and dynamic
deployable.It is critical for cloud providers to maintain an
optimal workflow scheduling and management system to
meet these challenges.

A workflow is formed by a logical sequence of
interdependent tasks decomposed from applications [4].
Acloud workflow system is vital for supporting large-scale e-
science and e-business applications [5]. Workflow
scheduling is one of the key components in a workflow
management system. The scheduler decides which resources
will be used, as well as which tasks will be executed on each
of these resources. It allocates suitable resources to workflow
tasks so that the execution can be completed while
satisfyingthe QoS constraints set by users, such as execution
time and cost. The workflow scheduling problem, like
general scheduling problems, is NP-complete. Workflow
scheduling algorithms often utilize heuristics and meta-
heuristics, includingsoft computing techniques, to obtain
approximated solutions.

In this paper, we adopt a workflow scheduling strategy
using Particle Swarm Optimization (PSO). PSO, an applied
soft computing method developed by Kennedy and Eberhart
[6], is one of the latest evolutionary algorithms inspired by
nature.PSO approximates an optimal solution by iteratively
improving a swarm of candidate solutions, called particles.
Each particle is modified iteratively by the best information
from both the individual and the entire swarm. Due to the
collective intelligence of these particles, the swarm is
expected tomove toward the best solutions. PSO works well
on most global optimal problems [6, 7]. In addition it is
simple, effective, and of low computational cost.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.53 e-ISSN: 2251-7545

352

Makespan and cost are two main performance
measurement criteria specified by cloud users and considered
by workflow schedulers [8-15]. Makespan is the time from
the beginningtillthe completion of the sequence of tasksina
workflow. Different application schedulers may use different
policies with different objectives. Some algorithms are
designed to achieve minimumcost[9, 12, 14] while others
strives for minimum makespan [13] or for load balance [14].
Most existing algorithms focus on achieving a single optimal
criterion [12-14].

In this paper, a workflow scheduling strategy to attaina
combined minimal cost and minimal makespan is introduced.
Moreover, the objective is adjustable between minimal cost
and minimal makespan, able to satisfy users’ various quality
of services (QoS) requirements.

The main contributions of this paper are:
1. A model for a mapping between tasks and resources is

formulated, achieving a tunable objective between cost
and makespan.

2. A PSO-based heuristics is presented to realize the
optimal mapping for the tunable objective.

3. The heuristics is further improved by addressing
bottleneck tasks and thus reduces the makespan even
more.

4. While most PSO papers simply use a fixed particle
number in their experiments, the effect of the number of
particles in the PSO performance is studied.

The rest of the paper is organized as follows: Section 2
discusses related work. The scheduling problem formulation
is described in Section 3. In Section 4 we present our
scheduling algorithms using PSO. Experimental results and
complexity analysis are derived in Section 5. Finally, Section
6 concludes the paper.

II. RELATEDWORK
This section discusses first the major works of workflow

scheduling for grid and cloud environments. Next, we focus
on those based on soft-computing approaches.

Task scheduling is an NP-Complete problem. Most
efforts are therefore concentrated on heuristics and meta-
heuristics. Yu and Buyya [16] studied several workflow
scheduling algorithms in a grid environment, such as Min-
Min, Max-Min, Heterogeneous Earliest-Finish-Time (HEFT)
algorithm [17], and Greedy Randomized Adaptive Search
Procedure (GRASP) algorithm [18]. Liu, et al proposed a
compromised-time-cost scheduling algorithm [8]. They
considered the characteristics of cloud computing to
accommodate instance-intensive cost-constrained workflows
by compromising execution time and cost with user input
enabled on the fly. The hybrid cloud optimized cost (HCOC)
algorithm, proposed by Bittencourt and Madeira [9],
schedules the workflow first in a private cloud, and
reschedules it onto a public cloud if the user deadline cannot
be met. Xu et al proposed a scheduling strategy for multiple
workflows and multiple QoS requirements [10]. The
algorithm considers several factors affecting the makespan
and cost of workflow; based on which a scheduling is

generated to satisfy users’ QoS requirements while
increasing the success rate of the workflow scheduling.

Several soft-computing approaches have been adopted to
solve workflow scheduling problem, including genetic
algorithm (GA) [11,12] and PSO [13-15, 19], etc. These
algorithms are evolutionary optimization algorithms inspired
by nature. Several studies have shown that PSO-based
algorithms have faster convergence and better scheduling
results that GA methods [13, 19]. Zhang et al adopted a PSO-
based task scheduling algorithm on a grid environment, with
an objective to minimize the completion time [13]. They
have found that the PSO-based method has reached results
that are better than the GA approach. Pandey, et al proposed
a PSO-based scheduling algorithm to minimize the total cost
of workflow [14]. It takes into account both execution and
transfer costs, and defines the maximum resource cost as the
fitness function to achieve load balance. Wu et al proposed a
revised discrete PSO scheduling algorithm, with the sum of
makespan and total cost as its fitness function [15].

Note that most of existing works addressed a single
fitness function (makespan[13] or cost [14]), a constrained
single objective [12], or a fitness function that is the sum of
makespan and cost [15]. We proposed a tunablefitness
function, which may be easily adjusted according to users’
priorities and QoS requirements, as described next.

III. SCHEDULING PROBLEM FORMULATION
In the following, we adopt the general model and notation

used by existing works on PSO-based scheduling [14, 15]. A
workflow is commonly represented by a Directed Acyclic
Graph (DAG), denoted by � = (�,�) . Let the number of
tasks in workflowbe � . The set of nodes � =
{��, … , ��}represents the tasks in the workflow applications,
where n is the total number of tasks. The set of arcs � =
����� 1 ≤ �, �≤ � represents the data dependencies amongthe
tasks. An arc, ���= (��, ��) ∈ �, implies that�� transfers data
to ��. In this relationship,�� is the parent task of��, and ��is
the child of ��. The child task can be executed only after it
receives data transferred from all of its parents. Fig. 1 shows
a workflow example of 8 interdependent tasks. Note that any
single task can have one or more children (except for the
bottom nodes), and any single task can have one or more
parents (except for the top node).

Suppose there are a total of� resources in the cloud
environment. The resources can be denoted as � =
{��, … , �� }. All the resources are interconnected with each
other so that they can transfer data among each other.The
scheduling problem is to find an optimal mapping �
between tasks and resources according to some optimization
objective. As mentioned before, cost is a common objective
that is more concerned by user; makespan is another
objective that is critical for scheduling.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.53 e-ISSN: 2251-7545

353

Figure 1. A workflow example with 8 tasks.

In the following, we formulate several optimization
objectives. Let � ������������(�) denote the makespan of
the workflow with respect to the mapping � :

� ������������(�) = �����ℎ ���� �� �ℎ� ���� ����−

����� ���� �� �ℎ� ����� ����

The makespan of a workflow is the time duration from the
beginning of the first task till the end of the last task. Since a
workflow consists of interdependent tasks, both execution
time and transfer time need to be considered.

Next, let ��������(��)and ���������(��)be the execution
and transfer costs of resource �� , respectively.
���������(��)denotes the total cost of resource ��:

���������(��) = ��������(��) + ���������(��)
1 ≤ �≤ � . (2)

Let ���������(�)be the total cost of the workflow w.r.t the
mapping � :

���������(�) = ∑ ���������(��)�
��� . (3)

For the objective of minimizingthe cost while balancing
the load [14],the fitness function is given as:

���������������� = ���(���������(��)), 1 ≤ �≤ � . (4)

The objective is to minimize ������� ���������. The reason
for not using the total cost of all the resources is to prevent
from mapping all the tasks to a single, least-cost resource.

For the objective of optimizing makespan (such as the
work by Zhang et al [13]), the fitness function can be defined
as:

���������������� = �������������(�). (5)

The objective is to minimize ������� ���������.
In this paper we propose an objective of minimizing the

weighted sum of total cost and makespan; the fitness function
can then be defined as:

���������������� = � ���������(�) +

(1 − �) � ������������(�), 0 ≤ � < 1,(6)

where� is the weight given to thetotal cost and 1 − � is the
weight given tomakespan. This fitness function can be easily
tuned by changing the value � to satisfy the various QoS
requirements including budget constraints. Again the
objective is to minimize������� ���������.

IV. PARTICLE SWARM OPTIMIZATION-BASED
SCHEDULING ALGORITHMS

This section presents the PSO method to approximate the
optimal solutions specified by the fitness functions defined
above. PSO is one of the latest evolutionary algorithms
inspired by the social behavior of fish schooling or bird
flocking [6]. Each particle corresponds to an individual bird
or fish searching in a search (problem) space, and is referred
to a candidate solution. The flock or swarm of particles is
randomly generated initially [20]. Each particle has its own
position in the space,with a fitness value corresponding to the
position; it also has a velocity to determine the speed and
direction by which is flies. PSO achieves an optimal solution
by having a population of particles (candidate solutions), and
moving these particles around in the search space according
to each particle’svelocity and updated position.

Particles in the search process update themselves by
tracking two best-known positions: (1) The local best
position is the individual’s best-known position in terms of
the fitness value reached so far by the particle itself. (2) The
global best position is the best position so far among all the
particles in the entire population.

A. Basic Notations
Let the number of particles be � . Let ��� , ��� ,

���and ��� be the position, velocity, best local and best global
positions, respectively, of particle iat iteration � . The
velocity and position of particle i are each updated according
to equations(7) and(8), respectively; and the two best
positions are updated according to(9) and (10) respectively:

��� = ������+����������−������+ ����������−������

1 ≤ �≤ �, (7)

��� = �����+���1 ≤ �≤ �, (8)

��� = ����(���, �����)1 ≤ �≤ �, (9)

��� = ����(���, … , ���), (10)

where, � is the inertial weight; �� , �� are acceleration
coefficients, and �� , �� are random numbers in the range
of[0,1]. At each iteration, the velocity is updated according
to its current velocity and the local and global best positions.
The position is updated based on the current position and the
updated velocity. These ensure that the particles search
around the local and global best positions and converge to a
global best position in the limited iteration.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.53 e-ISSN: 2251-7545

354

In the workflow scheduling problem, a particle represents
a mapping between the resources and the tasks. The
dimensionof a particle is the number of tasks in the
workflow. For example, consider a problem of 8 tasks and 5
resources. One possible particle for the mapping is illustrated
in Fig. 2.

Figure 2. A sample particle (8 tasks on 5 resources).

B. The PSO Algorithm
The evaluation of each particle is performed by the

fitness function, defined according to the optimization
objective, as described in Section III.The high-level structure
of a PSO algorithmis given in Table I, followed by a detailed
description.

First, the position and velocity of all the particles are
randomly initialized. If the iteration stopping criterion is not
met, the algorithm repeatedly does the following: for each
particle, it first calculates its fitness value using one of the
fitness functions given in (4-6), and then updates its local
best positions using (9). Then, it calculates the global best
position among all the particles using (10). It updates
thevelocity and position of all the particles using (7) and (8).
Finally, when the stopping criterion is met, the global best
position is the optimal mapping.

TABLE I. THE PSO ALGORITHM

1: Initialize particles’ position and velocity randomly.
2: While stopping criterion is not satisfied do
3: For each particle do
4: Calculate its fitness value using the fitness function.
5: Update its local best position.
6: End For
7: Update the global best position.
8: For each particle do
9: Update its velocity and position.
10: End For
11: End While
12: Return the global best position.

After computing the mapping using PSO, the scheduling

algorithm dispatches the ready tasks into each of the
resources. A ready task is defined to beone that
hascompletely received the entire data transferred from all of
its parent tasks.

C. Bottleneck Reduction
Next, we present a heuristics to further reduce the

makespan, as illustrated in Table II and described below.
Since all the ready tasks assigned to a specific resource are
independent, it will speed up the workflow by scheduling first
the “bottleneck” task; i.e., the task having most descendants.
Thus, in Step 3 the ready tasks are sorted according to the
number of descendants. If there is a tie, the one with a short

execution time will be given a high priority to execute first;
this is done in Step 5 where tasks are sorted according to the
execution time.

TABLE II. IMPROVEMENT: BOTTLENECK REDUCTION
ALGORITHM

1: For each resource do
2: For all the ready tasks in the resourcedo
3: Sort tasks in descending order of the number ofdescendants.
4: For ready tasks having the same number of descendantsdo
5: Sort tasks in ascending order of execution time.

V. PERFORMANCE EVALUATION AND COMPLEXITY
ANALYSIS

In this section, we first describe the four PSO algorithms
and the cloud experiment setup. Next, the performance
results are presented. Finally, the timecomplexity of four
algorithms is analyzed.

A. PSO Algorithms
TheJSwarmpackage is extended for conducting the PSO

experiments[21]. The number of iterations in the PSO
algorithm is set to be 100. Four algorithms are evaluated, as
summarized in Table III.

TABLE III. FOUR PSO ALGORITHMS

Algorithm Objective Fitness
Function Strength

1
[18]

Minimize the maximal cost (4) Load balance

2 Minimize the makespan (5) Low makespan
3

(Proposed)
Minimize the weighted

sum
of total cost and makespan

(6) Tunable

4
(Proposed)

Minimize the weighted
sum of total cost and

makespan, with bottleneck
reduction

(6) Tunable, with
Bottleneck-
reduction,

minimal cost &
min. makespan

B. Cloud Experiment Setup
CloudSim 3.0 is used to configure cloud environment and

simulate the execution of workflow [22-23]. It is is a toolkit
for modeling and simulation of cloud computing
environments. A data center (shown in Fig. 3) consisting of
one switch and four hosts each having two VM (Virtual
Machines) is configured in CloudSim. Note that the ports of
a given switch each havea different bandwidth. The
allocation of VM to hosts uses the default FCFS algorithm in
CloudSim. For each VM on the same host, the time-shared
policy is used such that two VM can run concurrently. For
each task on the same VM, the space-shared policy is used
such that tasks in one VM are executed sequentially.

The millions of instructions per second (MIPS) and
execution cost of each VM is given in Table III; the data
transfer cost between different VMs is shown in Table IV.
The prices are by referring to the pricing policy of Amazon

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.53 e-ISSN: 2251-7545

355

EC2’s pricing policy. In addition, the execution cost of a task
is in proportion to the task’s millions of instructions (MI)
requirement and the MIPS of the VM. The data transfer cost
is in proportion to the data size and the bandwidth between
VMs where the data are transferred.

Figure 3. Experimental datacenter infrastructure.

TABLE IV. MIPS AND EXECUTION COST OF EACH VM

VM MIPS Execution cost
(cents/MI)

0 1.011 0.03361
1 1.004 0.03333
2 1.013 0.03444
3 1.000 0.03278
4 0.990 0.03111
5 1.043 0.03528
6 1.023 0.03472
7 0.998 0.03167

TABLE V. TRANSFER COST (CENTS/MB) BETWEEN EACH VM

VM 0 1 2 3 4 5 6 7
0 0 0.17 0. 20 0.20 0.21 0.21 0.18 0.18
1 0.17 0 0.20 0.20 0.21 0.21 0.18 0.18
2 0.20 0.20 0 0.17 0.22 0.22 0.19 0.19
3 0.20 0.20 0.17 0 0.22 0.22 0.19 0.19
4 0.21 0.21 0.22 0.22 0 0.17 0.20 0.20
5 0.21 0.21 0.22 0.22 0.17 0 0.20 0.20
6 0.18 0.18 0.19 0.19 0.20 0.20 0 0.17
7 0.18 0.18 0.19 0.19 0.20 0.20 0.17 0

The workflow with 96 tasks is used in experiment (Fig.

4). Each task has its own MI; data transfers in megabyte
(MB) among tasks are also specified.

Figure 4. Experimental workflow (96 tasks).

C. Experimental Results
This section describes the results. All the results are the

average of 30 independent executions. � = 0.5 for
Algorithms 3 and 4 unless otherwise specified. Except for
Section 1), the number of particles = 500 is used.

1) The Effect of the Number of Particles

The number of particles may influence the performance
by a varyingdegreedepending on the problem being
optimized [7]. In a cloud environment, the total number of
tasks to be executed is usually large; i.e., the particle
dimension in the PSO is large. Existing results use a small
number of particles: 25 (for5 tasks [14]) and 30 (for 50-300
tasks [15]). We believe that using a larger number of
particles is more desired when there are a large number
oftasks(96 tasks in our experiments), so we conduct some
experiments to investigatethiseffect.

Fig. 5 shows the cost of Algorithms 1 and 4, and Fig. 6
the makespan of Algorithms 2 and 4. It is clear that the
number of particles affect the optimization results, especially
when the particle number is small (smaller than 200). When
the particle number increases beyond 500, the effect
gradually diminishes.

Using larger number of particles generally improves
optimization results, but also increases the time complexity
of the PSO algorithm (see Section V.D for complexity
analysis), we therefore choose a compromise and use 500 for
the rest of the experiments.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.53 e-ISSN: 2251-7545

356

Figure 5. Cost vs. the number of particles.

Figure 6. Makespan vs. the number of particles.

2) The Cost Performance
We vary the tasks’ MI by multiplying different

proportion values.Fig. 7 shows the total cost of the four
algorithms. The cost of Algorithms 3 and 4 are lower than
Algorithms 1 and 2, while the cost of Algorithm 2 is the
highest. This is reasonable since Algorithm 1 minimizes the
maximalof the individual costsrather than the total cost (to
prevent all the tasks executing on a single resource), while
Algorithm 2 minimizes the makespan. Algorithms 3 and 4
aim to minimize the sum of total cost and makespan, both
achieves the lowest cost.The Bottleneck reduction in
Algorithm 4 does not change the mapping and therefore does
not affect the cost.

The makespan of the four algorithms is shown in Fig. 8.
It is clear, and with obvious reason, that Algorithms 1 and 2
have the highest and the lowest makespan, respectively. Note
that Algorithm 4 attains a makespan that is very close to
Algorithm 2, and is even lower than Algorithm 2 with MI
proportion = 1.8. This demonstrates that Algorithm 4 has
achieved concurrently both minimal total cost and minimal
makespan.

Figure 7. Cost vs. MI (Millions of Instructions).

Figure 8. Makespan vs. MI (Millions of Instructions).

3) The Load Balance Performance
Fig. 9 shows the average and the sample standard

deviation (SSD) of the number of tasks per VM. Note that
since there are 96 tasks and 8 resources (VM), the average
number of tasks per VM is 12. The smaller the SSD, the
more balanced the load distribution. Observed that Algorithm
1 has achieved the most balanced load. Algorithms 3 and 4
have slightly higher SD.

To achieve a tunable PSO algorithm with excellent load
balance, the following (the fourth) fitness function may be
defined:

���������������� = � � ��(���������(��)) +

(1 − �) � ������������(�), 0 ≤ � < 1, 1 ≤ �≤ � , (11)
whichis to minimize the weighted sum of one maximum
resource cost (like Algorithm 1) and makespan (like
Algorithm 2). In other words, this fitness function simply

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.53 e-ISSN: 2251-7545

357

combines equations (5) and (6) with weighted values. We
namethe algorithm using fitness function (11) as Algorithm
5, and the one using fitness function (11) with bottleneck
reduction as Algorithm 6. Their load balance performance is
also shown in Figure 9.

Figure 9. Load balance: Average and SSD vs. MI (Millions of

Instructions).

It is clear that, using the new tunable fitness function,

Algorithms5 and 6achieve the most balanced load.This is
because fitness function (11) used in Algorithms 5 and 6
considers maximum resource cost instead of total cost as in
fitness function (6) used in Algorithm 3 and 4, the load of
each resource is thus more balanced. Note that the costs of
Algorithms 5 and 6 are between Algorithm 1 and 2, which
are higher than Algorithms 3 and 4.The makespan of
Algorithms 5 and 6 are also higher than Algorithm 3 and 4,
but lower than Algorithm 1.

4) Tuning theWeight Value (�)
One chief advantage of the proposed Algorithms 3 and

4,is that the weight value (�) can be tuned. Fig. 10 shows the
cost and makespan results while varying �. As �,the weight
placed on optimizingthe cost, increases, the cost decreases
while the makespan increases. Thus, �may be tuned to
achieve a degree of compromise between cost and makespan
according to different QoS requirements. (Note that the point
of intersection may move when the scale of the two vertical
axis change.)

Figure 10. Cost, Makespan vs. weight (�) values of Algorithm 4.

D. Complexity Analysis
While Algorithms 3 and 4 perform better than

Algorithms 1 and 2 in terms of combined cost and makespan,
as shown above, we analyze and compare the time
complexity of the four algorithms. Let N be the number of
particles, Lbe the number of iterations, nbe the number of
tasks, and ebe the number of edges in the DAG (i.e., the
number of data transfers needed among tasks) in the PSO
algorithm. The time complexity of the four algorithms is
summarized in Table VI. Clearly the four algorithms have
comparable complexities. Algorithm 4, which improves over
Algorithm 3, does not need a larger time complexity.

TABLE VI. TIMECOMPLEXITYANALYSIS

Algorithm 1
[18]

2 3
(Proposed)

4
(Proposed)

Fitness
function

O (n2) O (e) ≤
O (n2)

O (n2 + e)
= O (n2)

O (n2 + e)
= O (n2)

For N
particles

O (Nn2) O (Ne) ≤
O (Nn2)

O (Nn2) O (Nn2)

For L
iterations

O(LNn2) O(LNe)≤
O (LNn2)

O (LNn2) O (LNn2)

Bottleneck
reduction

N.A. N.A. N.A. O(LNn2+nlogn)
= O (LNn2)

VI. CONCLUSIONS AND FUTURE WORK
Most of the existing works using PSO for workflow

scheduling in the cloud environment use a single, fixed
fitness function. In this work a tunable fitness function has
been proposed, which may give different weights to cost
minimization and to makespan minimization. Furthermore,
as existing works carry out experiments mostly using a small
number of particles (25-30), we investigated the effect of the
number of particles in PSO-based algorithms, and chose a
suitable large number (500) in the experiments. With an
additional heuristics that deals with bottleneck tasks, the
proposed PSO-based algorithm has achieved both minimal
cost and minimal makespan comparing with two existing
algorithms. A similar tunable PSO-based algorithm has also

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.53 e-ISSN: 2251-7545

358

been proposed that achieved the best load-balance.Future
work may include exploring discrete PSO, experimenting the
proposed algorithm on real-life cloud environments, and
applying the idea of tunable objective functions on other soft
computing and distributed computing models.

REFERENCES
[1] I. Foster, Z. Yong, I. Raicu, and S. Lu, “Cloud computing and grid

computing 360-degree compared,” Proc. computing environments
workshop, pp. 1-10, 2008.

[2] K. Hwang, J. J. Dongarra, and G. C. Fox, Distributed and cloud
computing: from parallel processing to the internet of things. Elsevier,
Morgan Kaufmann, 2012.

[3] B. Sosinsky, Cloud computing bible. Wiley, 2011.
[4] L. F. Bittencourt, E. R. M. Madeira, and N. L. S. da Fonseca,

“Scheduling in hybrid clouds,” IEEE Communications Magazine, vol.
50, no. 9, pp. 48-55, 2012.

[5] Z. Wu, X. Liu, Z. Ni, D. Yuan, and Y. Yang, “A market-oriented
hierarchical scheduling strategy in cloud workflow systems,” Journal
of Supercomputing, 2011.

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc.
IEEE International Conference on Neural Networks, vol. 4, pp. 1942-
1948, 1995.

[7] D. Bratton and J. Kennedy, "Defining a Standard for Particle Swarm
Optimization," Proc. Swarm Intelligence Symposium, pp. 120-127,
2007.

[8] K. Liu, Y. Yang, J. Chen, X. Liu, D. Yuan and H. Jin, “A
compromised-time-cost scheduling algorithm in SwinDeW-C for
instance-intensive cost-constrained workflows on cloud computing
platform,” International Journal of High Performance Computing
Applications, vol. 24, no.4, pp. 445-456, 2010.

[9] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost optimization
algorithm for workflow scheduling in hybrid clouds,” Journal of
Internet Services and Applications, vol. 2, no. 3, pp. 207-27, 2011.

[10] M. Xu, L. Cui, H. Wang, and Y. Bi, “A multiple QoS constrained
scheduling strategy of multiple workflows for cloud computing,”
Proc. IEEE International Symposium on Parallel and Distributed
Processing with Applications, pp. 629-634, 2009.

[11] J. Yu and R. Buyya, “Scheduling scientific workflow applications
with deadline and budget constraints using genetic algorithms,”
Scientific Programming, vol. 14, nos. 3/4, pp. 217-230, 2006.

[12] J. Yu and R. Buyya, “A budget constrained scheduling of workflow
applications on utility grids using genetic algorithms”, Proc.
Workshop on Workflows in Support of Large-Scale Science, pp. 1-10,
2006.

[13] L. Zhang, Y. Chen, R. Sun, S. Jing, and B. Yang. “A task scheduling
algorithm based on pso for grid computing,” International Journal of
Computational Intelligence Research, vol. 4, no.1, pp. 37-43, 2008.

[14] S. Pandey, L. Wu, S. M. Guru, R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” Proc. 24th IEEE International
Conference on Advanced Information Networking and Applications
(AINA), pp.400-407, 2010.

[15] Z. Wu, Z. Ni, L. Gu, and X. Liu, “A revised discrete particle swarm
optimization for cloud workflow scheduling,” Proc. International
Conference on Computational Intelligence and Security, pp.184-188,
Dec. 2010.

[16] J. Yu and R. Buyya, "Workflow scheduling algorithms for grid
computing", Metaheuristics for Scheduling in Distributed Computing
Environments, Springer, 2008.

[17] H. Topcuouglu, S. Hariri and M. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distribution Systems, vol. 13, no. 3, pp.
260-274, 2002.

[18] R. Sakellariou and H. Zhao, “A hybrid heuristic for DAG scheduling
on hetero-geneous systems,” Proc. 13th Heterogeneous Computing
Workshop (HCW 2004), April 26, 2004.

[19] A. Salman, “Particle swarm optimization for task assignment
problem,” Microprocessors and Microsystems, vol. 26, no. 8, pp. 363-
371, 2002.

[20] P. Yin, S. Yu, and Y. Wang, “A hybrid particle swarm optimization
algorithm for optimal task assignment in distributed systems,”
Computer Standards and Interfaces, vol. 28, no. 4, pp. 441-450, 2006.

[21] P. Cingolani. (2005, June 20). JSwarm-PSO [Online]. Available:
http://jswarm-pso.sourceforge.net/

[22] R. N. Calheiros1, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R.
Buyya, “CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms,” Software – Practice and Experience, vol. 41, pp. 23-50,
2011.

[23] S. K. Garg and R. Buyya, “NetworkCloudSim: modelling parallel
applications in cloud simulations,” Proc. Fourth IEEE International
Conference on Utility and Cloud Computing, pp. 105-113, 2011.

