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Abstract—Software testing is a process to identify the quality and 
reliability of software, which can be achieved through the help of 
proper test data. However, doing this manually is a difficult task 
due to the presence ofhuge number of predicate nodes in the 
module. So, thisleads towards a problem of NP-complete. 
Therefore, someintelligence-based search algorithms have to be 
used to generate test data.In this paper, a soft computing based 
approach for generating test data automatically using genetic 
algorithmbased upon the set of basis paths is proposed.This 
paper combines the characteristics of genetic algorithm with test 
data, making use of the merits of respective global and local 
optimization capability to improve the generation capacity of test 
data.This automated process of generating test data optimally 
helps in reducing the test effort and time of a tester.Finally, the 
proposed approach is applied tothe ATM withdrawal task. 
Experimental results show that GA was able to generate suitable 
test data based on a fitness value and avoid redundant data by 
optimization. 

Keywords-basis path; cyclomatic complexity; fitness function; 
genetic algorithm; test data. 

I. INTRODUCTION 
The process of automatic generation of test data plays a 

major role in software testing. Software testing is generally 
divided into white box testing and black box testing. White 
box testing is also known as structural testing and basis path 
testing is one among them in structural testing.The emphasis is 
on finding specific input data. Therefore, automatic generation 
of test data is one of the key research topics in software 
testing. Today, researchers as well as practitioners use more 
common methods such as notion to perform, random method 
and heuristic approaches for test data generation[1]. These 
methods have some pitfalls in generating test data for larger 
and complicated programs. So other intelligence techniques 
have been used very much. 

Test data generation in program testing, is the process of 
identifying a set of test data, which satisfies the given testing 
criterion[2]. A test data generator is a tool which helps a tester 
in generation of test data for a given program.  Most of the 
existing test data generators have been classified into three 
types viz., path wise test data generators[3,4,5,6,7],  Data 
specification generators[8,9,10,11] and random test data 

generators [12], however practically these techniques require 
complex algebraic computations.  

In this paper, we discuss Genetic algorithm (GA), anon-
traditional approach for generating test data based on a set of 
basis paths. All the paths selected in a module need to be 
executed and thus generating a large set of test data for these 
pathsis quite a difficult task. As a result, certain degree of 
automated process should be carried out to minimize testing 
resources. GA helps in achieving this goal by optimizing test 
data required to cover the paths in a control flow graph. 

The rest of the paper is organized as follows: Section 2 
presents the need for test data automation; Section 3 gives an 
Overview of Basis path. Section 4 represents the fundamentals 
of GA for test data generation. Section 5 presents the proposed 
approach for test data generation using GA. Section 6 
represent the results, and section 7 concludes the paper. 

II. NEED FOR TEST DATA AUTOMATION 
Testing is defined as the process of executing a program 

with the intent of finding errors[13].Software testing can also 
be defined as a process, or a series of processes, designed to 
make sure the code does what it was designed to do and that it 
does not do anything unintended[13]. Software should be 
predictable and consistent, offering no surprises to users. The 
main objective of testing is to prove that the software product 
as a minimum meets a set of pre-established acceptance 
criteria under a prescribed set of environmental circumstances. 
There are two components to this objective. The first 
component is to prove that the requirements specification from 
which the software was designed is correct. The second 
component is to prove that the design and coding correctly 
respond to the requirements[14]. Automatic generation of test 
data helps in reduction of execution time and discovering 
errors. Automating the process of test data generation reduces 
the cost in developing test cases.  

III. OVERVIEW OF BASIS PATHS 
Basis path testing is one of the famous structural testing 

criteria[15]. It is a methodology which searches the program 
domain for suitable test data, such that after executing the 
program with the test data, a predefined path is reached. Based 
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on the cyclomatic complexity analysis, each path is being 
tested for efficient functionality. Practically it is possible to 
apply path testing for a specific subset of paths in the control 
flow graph. This mechanism aims to compute the logical 
complexity of a procedural design and defines a set of 
execution paths. Test data are generated in such a way that 
they will execute every statement at least once. 

Cyclomatic Complexity[15]is used to evaluate the 
complexity of an algorithm in a method. It is an indication of 
thenumber of test cases that are required to test the method 
completely, which helps a tester to estimate the number of test 
cases required to achieve maximum code coverage. Cyclomatic 
complexity is a measure of the logical complexity of a module, 
and the minimum effort necessary to qualify a module. 
Cyclomatic complexity is the number of linearly independent 
paths, and consequently the minimum number of paths that one 
shouldtest.  Based on the cyclomatic complexity measure, 
structured testing uses the control flow graph of software to 
establish path coverage criteria. The resultant test sets provide 
more thorough testing than statement and branch coverage. 
Cyclomatic complexity is given by the equation V(G) = e – n + 
2, where ‘e’ and ‘n’ are the number of edges and number of 
nodes in a control flow graph(CFG) respectively. The value of 
V (G) is an indication of all the possible paths of execution in 
the program and these set of paths are referred to as basis paths. 
A basis path is defined as a sequence of instructions or 
statements that start at an entry point and ends at another, or 
possibly the same, or exit. The value of V (G) implies a lower 
bound on the number of test cases required to test the method 
completely.Table-1 shows the list of literature survey and the 
criteria used by various authors in basis path testing. 

Table-1: Literature survey for test data generation in basis paths 
using GA. 

Author Criteria for Testing 

Duran J.W, Ntafos S.C Random Testing: Segment, Branch 
Coverage[16]. 

DeMillo R, Offutt A.J Generating test case values using adequacy 
based testing criteria[17]. 

L. Clarke 

Path coverage testing criteria’ to generate the 
test data. He selected target paths, executed 
them, and then generated test data such that the 
identified constraints are satisfied[5]. 

Bogdan Korel 

Path testing : dynamic path testing technique 
that generates test data by executing the 
program with different possible test data 
values[2]. 

Mansour N, Salame M 
path coverage testing criteria for generating test 
data using hamming distance as a fitness 
function[18]. 

Srivastava P.R, Kim T 

Focused on path coverage testing criteria and 
proposed a technique for generating test cases 
using GA[20],emphasizing on the critical paths 
during testing. 

Michael et al 
Branch coverage: automated test data 
generation.[21]. 

Wegener et al. Structural test coverage criteria to generate test 
data by using evolutionary approach[22]. 

Lin J.C, Yeh P.L Path testing:automated test data generation [19]. 

Xanthakis 
Search based software test data generation 
using heuristic search procedures[23]. 

Rauf A, Anwar S 

GUI based test criteria: generate test data using 
GA’s. Sequences of events represent the 
candidate test case values.Number of paths 
followed out of the total number of paths was 
used as a fitness function[24]. 

McMinn P Search based software test data generation[25]. 

Ahmed M.A Path coverage criteria to generate test data 
using GA[26]. 

Shen et al. 

Proposed GATS algorithm, which is a hybrid 
scheme of GA and Tabu search, to generate test 
data. Focus was on Function coverage testing 
criteria[27]. 

Harman M Search based software engineering for 
automated test data generation[28]. 

Malhotra et al Test data generation using machine learning 
techniques for the object oriented software[29]. 

IV. GENETIC ALGORITHM 
GAis an optimization and machine learning algorithm 

based loosely on the processes of biological evolution. John 
Holland created the GA field [30] and it is the first major GA 
publication. GA provides a general-purpose search 
methodology, which uses the principles of natural evolution 
[31].  

Genetic algorithm as an effective global smart search 
method, reveals its own strength and efficiency to solve the 
large space, optimized for high complicated problems, and 
thus provides a new method to solve the problems of 
generating test data [1].GA solves optimization problems by 
manipulating initial population (individual chromosomes 
sampled randomly). Each chromosome is evaluated based on a 
fitness function which is related to its success in solving a 
given problem.  Given an initial population of chromosomes, 
GAproceeds by choosing chromosomes to serve as parents 
and then replacing members of the current population with 
new chromosomes that are (possibly modified) copies of the 
parents. The process of selectionand population replacement 
goes on until a stopping criterion (achieving effective test 
data) has been met [32]. 

Thus,GA has been successfully used to automate the 
generation of test data. GA begins with a set of initial 
population which is randomly sampled for a particular 
problem domain. Then GA is applied, by performing a set of 
operations iteratively to get a new and fitter generation. 
Generating test data automatically reduces the time and effort 
of the tester. 

The two common operations that are performed to produce 
efficient solution for a target problem after selection operation 
are Crossover and Mutation. 

a. Crossover 
This operation is used to produce the descendants that make 
up the next generation. This operation involves the following 
cross breeding procedures[19]. 
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i. Randomly select two individuals as a couple 
from the parent generation. 

ii. Randomly select a position of the genes, 
corresponding to this couple, as the cross over 
point. Thus, each gene is divided into two parts. 

iii. Exchange the first parts of both genes 
corresponding to the couple. 

iv. Add the two resulted individuals to the next 
generation. 
 

b. Mutation 
The mutation operation picks a gene at random and 

changes its state according to the mutation probability. 
Mutation maintains diversity in a generation to prevent 
premature convergence to a local optimal solution. 

Mutation operation is carried out after Crossover. Mutation 
is an operation in which the chromosomal bit representation of 
zero’s are flipped into one’s and vice versa based on the 
mutation probability(pm). GA guarantee high probability of 
improving the quality of the individuals over several 
generations according to the Schema Theorem[31]. Mutation 
generally prevents GA from falling into local extremes. 
Mutation shouldn’t occur frequently, because GA will change 
into random search. 

A. Fitness Function for Basis Paths 

A fitness function for test data generation for an ATM 
withdrawal task is developed based on Bogdan Korel’s branch 
distance function [2]. Consider a path ‘P’ in the program 
execution. The goal of the test data generation problem is to 
find a program input ‘x’ on which P will be traversed. Without 
loss of generality, Korel assumed that the branch predicates 
are simple relational expressions (inequalities and equalities). 
That is, all branch predicates are of the form: E1 opE2, where 
E1 and E2 are the arithmetic expressions and op is one of {<, 

 

≤, >, ≥, =, ≠} the operator. In addition, he assumed that 
predicates do not contain AND’s or OR’s or other boolean 
operators. Each branch predicate E1 opE2 can be transformed 
to the equivalent predicate of the form F rel 0, where F and rel 
are given in Table-2. 
 

Table-2: Equivalent predicate of branch function. 
Branch 

Predicate 
Branch 

Function F rel 
E1>   E2 E2  - E1 < 
E1 ≥   E2 E2 - E1 ≤ 
E1<   E2 E1 -E2 < 
E1  ≤  E2 E1 -E2 ≤ 
E1  =  E2 abs(E1 - E2) = 
E1  

 

≠  E2 abs(E1 -E2) ≤ 
 
F is a real valued function, referred to as branch function, 

which is 1) positive (or zero if rel is <) when a branch 
predicate is false or 2) negative (or zero if rel is = or ≤ ) when 
the branch predicate is true. It is obvious that F is actually a 

function program input. But this process requires a very large 
and complex algebraic manipulation. For this reason an 
alternative approach was used in which the branch function 
was evaluated, as basis path testing includes both statement 
testing and branch testing. For example to test “if a > b 
then…” has a branch function F, whose value can be 
computed for a given input by executing the program and 
evaluating ‘a-b’ expression. 

This concept was used in our approach to test the ATM 
withdrawal task. We generated test data for a feasible basis 
path in theCFG. From CFG, we can compute the number of 
paths required to be tested.We have generated test data for a 
single feasible with respect to an ATM withdrawal task[33]. 

V. PROPOSED SYSTEM 
The concept of GA has been applied to the problem of 

automated test data generation process.  Here the test data is 
referred to as population in GA. In initial population, each 
individual bit string (chromosome) is a test data. This set of 
chromosomes is used to generate test data for feasible basis 
paths. 

The system for generating automated test data for feasible 
basis paths using GA has been coded in MATLAB. It 
randomly generates the initial population, evaluates the 
individual chromosome based on the fitness function value 
and applies the GA operations such as selection, crossover and 
mutation to produce next generation. This iterative process 
stops when the GA finds optimal test data. 

A. Fitness function design for our approach 
We have taken up a case study, describing a customer’s 

activity of withdrawing money from an ATM[33].  Each 
customer in the bank system has an account and an ATM debit 
card. The scenario considered here for design of fitness 
function is that the customer tries to withdraw certain amount 
from the ATM machine (this withdrawal amount is the initial 
test data generated randomly, with an assumption that 
customer entering the withdrawal amount is random).Figure-1 
shows the sequence of operations performed in ATM 
withdrawal task by the customer. 
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Figure-1: Sequence diagram for ATM Withdrawal. 

 
The ATM system then sends the amount, and the account 

number to the bank system. The bank system retrieves the 
current balance of the corresponding account and compares it 
with the entered amount. If the balance amount is found to be 
greater than the entered amount then the amount can be 
withdrawn andthe bank system returns true, after which the 
customer can withdraw the money otherwise it checks for 
credit limit if the entered amount is less than the total amount 
(current balance) then return false. Depending on the return 
value, the ATM machine dispenses the cash and prints the 
receipt or displays the failure message. 

 

 
Figure-2: CFG for a sample code block. 

 
The fitness function for the ATM withdrawal scenario 

was based on the traversal of predicate nodes. For instance, in 
Figure-2 when node-1 is visited the condition of the predicate 
node may be either ‘A > B’ or B > A or even A = B conditions 

may occur. So now taking equality condition into 
consideration, A = B implies A – B = 0; as GA for test data 
generation is minimization the fitness function ‘f’ is given as 1 
/ (A - B). But this functional value ‘f’ will evaluate to infinity 
when A – B=0, so to avoid this condition a small delta value is 
added to the fitness function. Hence the fitness function in 
general is given as: f = 1 / ((abs (A - B) + 0.5) ^ 2). 

B. Applying Genetic Algorithm for Path Testing 
The principle of GAs has been applied to generate test data 

automatically. The developed system generates optimal test 
data automatically on the basis of basis paths in the control 
flow graph. The first generation is generated randomly and 
then by performing the basic GA steps, fitness of individuals 
gets improved. The system first generates the individual test 
data randomly, and then calculates fitness for each individual 
chromosome (test data) and on the basis of their fitness values 
it performs mutation and crossover. This process continues 
until all individuals reach to the maximum fitness. The system 
performs all operations from initial population to last 
generation automatically; it does not require the user 
interference. Generating test data automatically reduces the 
time and effort of the tester. 

1) Deriving test data based on Control flow graph 

1. Using the source code of the program, draw the 
corresponding control flow graph (manually or 
automated). 

2. Determine the cyclomatic complexity of the flow 
graph. 

3. Determine the basis set of linearly independent 
paths. 

4. Prepare test data that will force the execution of 
each path in the basis set. 

This set of data generated randomly is the initial 
population Input) of the GA process to start. 

The following lines of code indicate the ATM withdrawal 
task. 

1. net_amt = 25000; 
2. bal(1,i) = net_amt - wd_amt(1,i); 
3. if wd_amt(1,i) < net_amt 
4. if bal(1,i) < min_bal 
5. fail_bal(1,k) = bal(1,i); 

else 
6. suc_bal(1,p) = bal(1,i); 
7. test_data(1,p) = wd_amt(1,i); 

 
Control flow graph construction for ATM withdrawal task for 
source code shown above (target path) is shown in Figure-3. 
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Figure-3: Control flow graph for ATM withdrawal. 

 
Table-3: Alphabetical representation of Predicate Nodes in CFG for 

Fig. 3 
 
 
 
 
 
 
 
 

 
 
 
 

2) Genetic algorithm for test data generation 

The following steps show the algorithmic approach 
followed to generate test data for the basis path derived from 
CFG using GA.Figure-4 shows the schematic representation 
of test data generation using GA. 
Algorithm: 
Input: Randomly generated numbers (initial population act as 
test data) based on the target path to be covered. 
Output: Test data for the target path. 

1. Gen = 0 
2. While Gen < 500 
3. do 
4. Evaluate the fitness value of each chromosome based 

on the objective function. 
5. Use Elitism as selection operator, to select the 

individuals to enter into the mating pool.  
6. Perform two-point cross over on the individuals in 

the mating pool, to generate the new population. 
7. Perform bitwise Mutation on chromosomes of the 

new population 

8. Gen = Gen +1 
9. go to Step 3 
10. end 
11. Select the chromosome having the best fitness value 

as the desired result (test data for target path). 

 
Figure-4: Basic flow of test data generation along with GA process. 

 

3) Experimental Settings 

The following sets of parameters were considered for test data 
generation using GA. 

a. Fitness function :  
f = 1 / ((abs (suc_bal (i) - min_bal) + 0.05) ^2) 

b. Coding : Binary String 
c. Length of the string in the chromosome : 15bits 
d. Population Size (N) :100 
e. Selection method :Elitism 
f. Two-point crossover and pc = 0.5 
g. Mutation probability( pm) = 0.05 
h. Stopping Criteria = number of generation (500) 

First set of test data was generated randomly. The test 
datathat we derived based on the set of basis paths, depends on 

Predicate 
Nodes 

Alphabetical 
Notation 

wd_amt A 
net_amt X 

bal B 
min_bal C 

Fail D 
suc_bal E 
test_data F 



                           The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 
San Francisco State University, CA, U.S.A., March 2013 
Doi: 10.7321/jscse.v3.n3.49         e-ISSN: 2251-7545 

 

331 
 

the programs structure with an aim to traverse every 
executable statement in the program. The fitness function used 
was derived on the basis of branch distance[2]. The input 
variables were represented in binary form. The main objective 
of using GAs lies in their ability to handle input data which 
may be complex in nature. Thus, the problem of test data 
generation is treated entirely as an optimization problem. One 
of the merits of using GAs is that through the search and 
optimization process, test data sets are improved in a manner 
that they are close to the input domain. 

VI. RESULTS 
The approach followed for test data generation for path 

testing using GA, the following four basic steps were 
processed viz., Control Flow Graph Construction, Target Path 
Selection, Test Data generation and Execution, Test Result 
Evaluation.  

Table-4 shows the fitness value range of test data and the 
classification of individual chromosome into their respective 
classes based on fitness value in terms of percentage.  

Table-4: % Class of Test Data having maximum fitness value 

Fitness Value Range % of Test Data 

 0 ≤  f(x) < 0.3 61 

0.3 ≤  f(x) < 0.7 01 

0.7  ≤  f(x) < 1.0  38 
 

Table-4 gives us a clear picture that around 38% of test data 
have higher fitness value ‘f(x)’and lie in the range between 1.0 
and 0.7. Figure-5 gives the graphical representation of test 
data in terms of percentage. 

 
 
 

Figure-5: Graphical Representation of fitness value for Table-4. 

VII. CONCLUSIONS 
In software development life cycle, software testing is one 

of the critical phases. So generation of test data 
automaticallyis a key step which has a great influence on code 
coverage in software testing.  

In this paper, a GA based on theory of natural selection was 
used to generate test data automatically for feasible basis 
paths. After the generation of initial test data randomly, GA 

was iterated for 500 generations as in practicality computation 
time should be finite. This paper makes use of a fitness 
function based on the condition of the predicate node.  

The results in thispaper are an indication that GA is more 
effective and efficient in generating automated test data rather 
than random testing. 

The future perspective of the work would be to enhance 
automated test data generation for large and complex 
programs, as of now the existing methods generate test data 
for smaller and simple programs. 

Another prospective area of future study would be to 
generate test data using a fitness function for multiple paths in 
the control flow graph. The test data generated using GA can 
be used in code coverage analysis by comparing with other 
artificial intelligence techniques such as Particle swarm 
optimization, Simulated annealing, Clonal selection algorithm 
etc. 

REFERENCES 
[1] Wang Xibo and Su Na, "Automatic test data generation for path testing 

using genetic algorithms," in Proc. 3rd International Conference on 
Measuring Technology and Mechantronics Automation ( ICMTMA ), 
2011, pp. 596-599. 

[2] Bogdan Korel, "Automated Software Test Data Generation," IEEE 
Transactions on Software Engineering, vol. 16, no. 8, pp. 870-879, 
August 1990. 

[3] Janis Bicevskis, Juris Borzovs, Uldis Straujums, Andris Zarins, and 
Edward F. Miller Jr., "SMOTL- A system to construct samples for data 
processing program debugging," IEEE Transactions on Software 
Engineering, vol. SE-5, no. 1, pp. 60-66, January 1979. 

[4] R. Boyer, B. Elspas, and K. Levitt, "SELECT-A formal system for 
testing and debugging programs by symbolic execution," SIGPLAN 
Notices, vol. 10, no. 6, pp. 234-245, June 1975. 

[5] L. Clarke, "A system to generate test data and symbolically execute 
programs," IEEE Transactions on Software Engineering, vol. SE-2, no. 
3, pp. 215-222, September 1976. 

[6] W. Howden, "Symbolic testing and the DISSECT symbolic evaluation 
system," IEEE Transactions on Software Engineering, vol. SE-4, no. 4, 
pp. 266-278, July 1977. 

[7] C. Ramamoorthy, S. Ho, and W. Chen, "On the automated generation of 
program test data," IEEE Transactions on Software Engineering, vol. 
SE-2, no. 4, pp. 293-300, December 1976. 

[8] J. Bauer and A. Finger, "Test plan generation using formal grammars," in 
Proc. 4th International Conference on Software Engineering, 1970, pp. 
425-432. 

[9] W. Jessop, I. Kanem, S. Roy, and J. Scanlon, "ATLAS - An automated 
software testing system," in Proc. 2nd International Conference on 
Software Engineering, 1976. 

[10] N. Lyons, "An automatic data generation system for data base simulation 
and testing," ACM SIGMIS Data Base, vol. 8, no. 4, pp. 10-13, 1977. 

[11] E. Miller Jr and R. Melton, "Automated generation of testcase datasets," 
SIGPLAN Notices, vol. 10, no. 6, pp. 51-58, June 1975. 

[12] D. Bird and C. Munoz, "Automatic generation of random self-checking 
test case," IBM System Journal, vol. 22, no. 3, pp. 229-245, 1983. 

[13] Glenford J. Myers, The art of software testing, 2nd ed.: Wiley, 2004. 
[14] S. Kuppuraj and S. Priya, "Search Based Optimization for Test Data 

Generation Using Genetic Algorithms," in Proc of the 2nd International 
Conference on Computer Applications, 2012, pp. 201-205. 

0

20

40

60

80

0.0 - 0.3 03. - 0.7 0.7 -1.0

Test 
Data 
( % ) 

Fitness Value Range 



                           The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 
San Francisco State University, CA, U.S.A., March 2013 
Doi: 10.7321/jscse.v3.n3.49         e-ISSN: 2251-7545 

 

332 
 

[15] Thomas J. McCabe, "A complexity measure," IEEE Transactions on 
Software Engineering, vol. 2, no. 4, pp. 308-320, December 1976. 

[16] Duran J. W and Ntafos S. C, "An evaluation of random testing," IEEE 
Transactions on Software Engineering, vol. 10, no. 4, pp. 438-443, 1984. 

[17] DeMill R and Jeff Offutt, "Constraint-based automatic test data 
generation," IEEE Transactions on Software Engineering, vol. 17, no. 9, 
pp. 900-910, September 1991. 

[18] Mansour N and Salame M, "Data Generation for Path Testing," Software 
Quality Journal, vol. 12, pp. 121-136, 2004. 

[19] Lin J. C and Yeh P. L, "Automatic test data generation for path testing 
using GA's ," Information Sciences, vol. 131, pp. 47-64, 2001. 

[20] Srivastava P. R and Kim T, "Application of Genetic Algorithm in 
Software Testing," International Journal of Software Engineering and Its 
Applications, vol. 3, no. 4, pp. 87-96, 2009. 

[21] Christoph C Michael, Gary McGraw, and Michael A. Schatz, 
"Generating software test data by evolution," IEEE Transactions on 
Software Engineering, vol. 27, no. 12, pp. 1085-1110, December 2001. 

[22] Wegener J, Baresel A, and Sthamer H, "Evolutionary Test Environment 
for Automatic Structural Testing," Information and Software 
Technology, vol. 43, pp. 841-854, 2001. 

[23] S, Xanthakis; C, Ellis; C, Skourlas; A, Le Gall; S, Katsikas; K, 
Karapoulios, "Application of genetic algorithm in software testing," in 
Proceedings of 5th International Conference on Software Engineering 
and its Applications, Toulouse, France, 1992, pp. 625-636. 

[24] Rauf A and Anwar S, "Automated GUI Test Coverage Analysis using 
GA," in Seventh International Conference on Information Technology, 
2010, pp. 1057-1062. 

[25] McMinn P, "Search-based software test data generation: A survey," 
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105-
156, 2004. 

[26] Moataz A. Ahmed and Irman Hermadi, "GA based multiple paths test 
data generator," Computers & Operations Research , vol. 35, pp. 3107-
3124, February 2007. 

[27] Xiajiong Shen, Qian Wang, Peipei Wang, and Bo Zhou, "Automatic 
Generation of Test Case based on GATS Algorithm," in IEEE 
International Conference on Granular Computing, GRC'09, 2009, pp. 
496-500. 

[28] Harman Mark, "Automated Test Data Generation using Search Based 
Software Engineering," in Second International Workshop on 
Automation of Software Test (AST'07), 2007, pp. 1-2. 

[29] Malhotra R and Garg M, "On the Applicability of Machine Learning 
Techniques for Object Oriented Software Fault Prediction," Software 
Engineering : An International Journal (SEIJ), vol. 1, no. 1, September 
2011. 

[30] J. H. Holland, Adaptation in Nature and Artificial Systems.: Addison-
Wesley, Reading, MA, 1975. 

[31] D. E. Goldberg, Genetic Algorithms in Search, Optimization and 
Machine Learning.: Addision-Wesley, Reading, MA, 1989. 

[32] James D. Kelly Jr and Lawrence Davis, "A Hybrid Genetic Algorithm 
for Classification," International Joint Conference on Artificial 
Intelligence, pp. 645-650, 1991. 

[33] Michael R Blaha and James R Rumbaugh, Object-oriented modeling and 
design with UML, 2nd ed.: Pearson, 2005. 

 


