
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.49 e-ISSN: 2251-7545

326

A Genetic Algorithm based Approach for Test Data
Generationin Basis Path Testing

Yeresime Suresh
Department of Computer Science and Engineering,

National Institute of Technology,
Rourkela 769008, India

Santanu Ku Rath
Department of Computer Science and Engineering,

National Institute of Technology,
Rourkela 769008, India

suresh.yeresime@gmail.com

skrath@nitrkl.ac.in

Abstract—Software testing is a process to identify the quality and
reliability of software, which can be achieved through the help of
proper test data. However, doing this manually is a difficult task
due to the presence ofhuge number of predicate nodes in the
module. So, thisleads towards a problem of NP-complete.
Therefore, someintelligence-based search algorithms have to be
used to generate test data.In this paper, a soft computing based
approach for generating test data automatically using genetic
algorithmbased upon the set of basis paths is proposed.This
paper combines the characteristics of genetic algorithm with test
data, making use of the merits of respective global and local
optimization capability to improve the generation capacity of test
data.This automated process of generating test data optimally
helps in reducing the test effort and time of a tester.Finally, the
proposed approach is applied tothe ATM withdrawal task.
Experimental results show that GA was able to generate suitable
test data based on a fitness value and avoid redundant data by
optimization.

Keywords-basis path; cyclomatic complexity; fitness function;
genetic algorithm; test data.

I. INTRODUCTION
The process of automatic generation of test data plays a

major role in software testing. Software testing is generally
divided into white box testing and black box testing. White
box testing is also known as structural testing and basis path
testing is one among them in structural testing.The emphasis is
on finding specific input data. Therefore, automatic generation
of test data is one of the key research topics in software
testing. Today, researchers as well as practitioners use more
common methods such as notion to perform, random method
and heuristic approaches for test data generation[1]. These
methods have some pitfalls in generating test data for larger
and complicated programs. So other intelligence techniques
have been used very much.

Test data generation in program testing, is the process of
identifying a set of test data, which satisfies the given testing
criterion[2]. A test data generator is a tool which helps a tester
in generation of test data for a given program. Most of the
existing test data generators have been classified into three
types viz., path wise test data generators[3,4,5,6,7], Data
specification generators[8,9,10,11] and random test data

generators [12], however practically these techniques require
complex algebraic computations.

In this paper, we discuss Genetic algorithm (GA), anon-
traditional approach for generating test data based on a set of
basis paths. All the paths selected in a module need to be
executed and thus generating a large set of test data for these
pathsis quite a difficult task. As a result, certain degree of
automated process should be carried out to minimize testing
resources. GA helps in achieving this goal by optimizing test
data required to cover the paths in a control flow graph.

The rest of the paper is organized as follows: Section 2
presents the need for test data automation; Section 3 gives an
Overview of Basis path. Section 4 represents the fundamentals
of GA for test data generation. Section 5 presents the proposed
approach for test data generation using GA. Section 6
represent the results, and section 7 concludes the paper.

II. NEED FOR TEST DATA AUTOMATION
Testing is defined as the process of executing a program

with the intent of finding errors[13].Software testing can also
be defined as a process, or a series of processes, designed to
make sure the code does what it was designed to do and that it
does not do anything unintended[13]. Software should be
predictable and consistent, offering no surprises to users. The
main objective of testing is to prove that the software product
as a minimum meets a set of pre-established acceptance
criteria under a prescribed set of environmental circumstances.
There are two components to this objective. The first
component is to prove that the requirements specification from
which the software was designed is correct. The second
component is to prove that the design and coding correctly
respond to the requirements[14]. Automatic generation of test
data helps in reduction of execution time and discovering
errors. Automating the process of test data generation reduces
the cost in developing test cases.

III. OVERVIEW OF BASIS PATHS
Basis path testing is one of the famous structural testing

criteria[15]. It is a methodology which searches the program
domain for suitable test data, such that after executing the
program with the test data, a predefined path is reached. Based

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.49 e-ISSN: 2251-7545

327

on the cyclomatic complexity analysis, each path is being
tested for efficient functionality. Practically it is possible to
apply path testing for a specific subset of paths in the control
flow graph. This mechanism aims to compute the logical
complexity of a procedural design and defines a set of
execution paths. Test data are generated in such a way that
they will execute every statement at least once.

Cyclomatic Complexity[15]is used to evaluate the
complexity of an algorithm in a method. It is an indication of
thenumber of test cases that are required to test the method
completely, which helps a tester to estimate the number of test
cases required to achieve maximum code coverage. Cyclomatic
complexity is a measure of the logical complexity of a module,
and the minimum effort necessary to qualify a module.
Cyclomatic complexity is the number of linearly independent
paths, and consequently the minimum number of paths that one
shouldtest. Based on the cyclomatic complexity measure,
structured testing uses the control flow graph of software to
establish path coverage criteria. The resultant test sets provide
more thorough testing than statement and branch coverage.
Cyclomatic complexity is given by the equation V(G) = e – n +
2, where ‘e’ and ‘n’ are the number of edges and number of
nodes in a control flow graph(CFG) respectively. The value of
V (G) is an indication of all the possible paths of execution in
the program and these set of paths are referred to as basis paths.
A basis path is defined as a sequence of instructions or
statements that start at an entry point and ends at another, or
possibly the same, or exit. The value of V (G) implies a lower
bound on the number of test cases required to test the method
completely.Table-1 shows the list of literature survey and the
criteria used by various authors in basis path testing.

Table-1: Literature survey for test data generation in basis paths
using GA.

Author Criteria for Testing

Duran J.W, Ntafos S.C Random Testing: Segment, Branch
Coverage[16].

DeMillo R, Offutt A.J Generating test case values using adequacy
based testing criteria[17].

L. Clarke

Path coverage testing criteria’ to generate the
test data. He selected target paths, executed
them, and then generated test data such that the
identified constraints are satisfied[5].

Bogdan Korel

Path testing : dynamic path testing technique
that generates test data by executing the
program with different possible test data
values[2].

Mansour N, Salame M
path coverage testing criteria for generating test
data using hamming distance as a fitness
function[18].

Srivastava P.R, Kim T

Focused on path coverage testing criteria and
proposed a technique for generating test cases
using GA[20],emphasizing on the critical paths
during testing.

Michael et al
Branch coverage: automated test data
generation.[21].

Wegener et al. Structural test coverage criteria to generate test
data by using evolutionary approach[22].

Lin J.C, Yeh P.L Path testing:automated test data generation [19].

Xanthakis
Search based software test data generation
using heuristic search procedures[23].

Rauf A, Anwar S

GUI based test criteria: generate test data using
GA’s. Sequences of events represent the
candidate test case values.Number of paths
followed out of the total number of paths was
used as a fitness function[24].

McMinn P Search based software test data generation[25].

Ahmed M.A Path coverage criteria to generate test data
using GA[26].

Shen et al.

Proposed GATS algorithm, which is a hybrid
scheme of GA and Tabu search, to generate test
data. Focus was on Function coverage testing
criteria[27].

Harman M Search based software engineering for
automated test data generation[28].

Malhotra et al Test data generation using machine learning
techniques for the object oriented software[29].

IV. GENETIC ALGORITHM
GAis an optimization and machine learning algorithm

based loosely on the processes of biological evolution. John
Holland created the GA field [30] and it is the first major GA
publication. GA provides a general-purpose search
methodology, which uses the principles of natural evolution
[31].

Genetic algorithm as an effective global smart search
method, reveals its own strength and efficiency to solve the
large space, optimized for high complicated problems, and
thus provides a new method to solve the problems of
generating test data [1].GA solves optimization problems by
manipulating initial population (individual chromosomes
sampled randomly). Each chromosome is evaluated based on a
fitness function which is related to its success in solving a
given problem. Given an initial population of chromosomes,
GAproceeds by choosing chromosomes to serve as parents
and then replacing members of the current population with
new chromosomes that are (possibly modified) copies of the
parents. The process of selectionand population replacement
goes on until a stopping criterion (achieving effective test
data) has been met [32].

Thus,GA has been successfully used to automate the
generation of test data. GA begins with a set of initial
population which is randomly sampled for a particular
problem domain. Then GA is applied, by performing a set of
operations iteratively to get a new and fitter generation.
Generating test data automatically reduces the time and effort
of the tester.

The two common operations that are performed to produce
efficient solution for a target problem after selection operation
are Crossover and Mutation.

a. Crossover
This operation is used to produce the descendants that make
up the next generation. This operation involves the following
cross breeding procedures[19].

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.49 e-ISSN: 2251-7545

328

i. Randomly select two individuals as a couple
from the parent generation.

ii. Randomly select a position of the genes,
corresponding to this couple, as the cross over
point. Thus, each gene is divided into two parts.

iii. Exchange the first parts of both genes
corresponding to the couple.

iv. Add the two resulted individuals to the next
generation.

b. Mutation
The mutation operation picks a gene at random and

changes its state according to the mutation probability.
Mutation maintains diversity in a generation to prevent
premature convergence to a local optimal solution.

Mutation operation is carried out after Crossover. Mutation
is an operation in which the chromosomal bit representation of
zero’s are flipped into one’s and vice versa based on the
mutation probability(pm). GA guarantee high probability of
improving the quality of the individuals over several
generations according to the Schema Theorem[31]. Mutation
generally prevents GA from falling into local extremes.
Mutation shouldn’t occur frequently, because GA will change
into random search.

A. Fitness Function for Basis Paths

A fitness function for test data generation for an ATM
withdrawal task is developed based on Bogdan Korel’s branch
distance function [2]. Consider a path ‘P’ in the program
execution. The goal of the test data generation problem is to
find a program input ‘x’ on which P will be traversed. Without
loss of generality, Korel assumed that the branch predicates
are simple relational expressions (inequalities and equalities).
That is, all branch predicates are of the form: E1 opE2, where
E1 and E2 are the arithmetic expressions and op is one of {<,

≤, >, ≥, =, ≠} the operator. In addition, he assumed that
predicates do not contain AND’s or OR’s or other boolean
operators. Each branch predicate E1 opE2 can be transformed
to the equivalent predicate of the form F rel 0, where F and rel
are given in Table-2.

Table-2: Equivalent predicate of branch function.
Branch

Predicate
Branch

Function F rel
E1> E2 E2 - E1 <
E1 ≥ E2 E2 - E1 ≤
E1< E2 E1 -E2 <
E1 ≤ E2 E1 -E2 ≤
E1 = E2 abs(E1 - E2) =
E1

≠ E2 abs(E1 -E2) ≤

F is a real valued function, referred to as branch function,

which is 1) positive (or zero if rel is <) when a branch
predicate is false or 2) negative (or zero if rel is = or ≤) when
the branch predicate is true. It is obvious that F is actually a

function program input. But this process requires a very large
and complex algebraic manipulation. For this reason an
alternative approach was used in which the branch function
was evaluated, as basis path testing includes both statement
testing and branch testing. For example to test “if a > b
then…” has a branch function F, whose value can be
computed for a given input by executing the program and
evaluating ‘a-b’ expression.

This concept was used in our approach to test the ATM
withdrawal task. We generated test data for a feasible basis
path in theCFG. From CFG, we can compute the number of
paths required to be tested.We have generated test data for a
single feasible with respect to an ATM withdrawal task[33].

V. PROPOSED SYSTEM
The concept of GA has been applied to the problem of

automated test data generation process. Here the test data is
referred to as population in GA. In initial population, each
individual bit string (chromosome) is a test data. This set of
chromosomes is used to generate test data for feasible basis
paths.

The system for generating automated test data for feasible
basis paths using GA has been coded in MATLAB. It
randomly generates the initial population, evaluates the
individual chromosome based on the fitness function value
and applies the GA operations such as selection, crossover and
mutation to produce next generation. This iterative process
stops when the GA finds optimal test data.

A. Fitness function design for our approach
We have taken up a case study, describing a customer’s

activity of withdrawing money from an ATM[33]. Each
customer in the bank system has an account and an ATM debit
card. The scenario considered here for design of fitness
function is that the customer tries to withdraw certain amount
from the ATM machine (this withdrawal amount is the initial
test data generated randomly, with an assumption that
customer entering the withdrawal amount is random).Figure-1
shows the sequence of operations performed in ATM
withdrawal task by the customer.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.49 e-ISSN: 2251-7545

329

Figure-1: Sequence diagram for ATM Withdrawal.

The ATM system then sends the amount, and the account

number to the bank system. The bank system retrieves the
current balance of the corresponding account and compares it
with the entered amount. If the balance amount is found to be
greater than the entered amount then the amount can be
withdrawn andthe bank system returns true, after which the
customer can withdraw the money otherwise it checks for
credit limit if the entered amount is less than the total amount
(current balance) then return false. Depending on the return
value, the ATM machine dispenses the cash and prints the
receipt or displays the failure message.

Figure-2: CFG for a sample code block.

The fitness function for the ATM withdrawal scenario

was based on the traversal of predicate nodes. For instance, in
Figure-2 when node-1 is visited the condition of the predicate
node may be either ‘A > B’ or B > A or even A = B conditions

may occur. So now taking equality condition into
consideration, A = B implies A – B = 0; as GA for test data
generation is minimization the fitness function ‘f’ is given as 1
/ (A - B). But this functional value ‘f’ will evaluate to infinity
when A – B=0, so to avoid this condition a small delta value is
added to the fitness function. Hence the fitness function in
general is given as: f = 1 / ((abs (A - B) + 0.5) ^ 2).

B. Applying Genetic Algorithm for Path Testing
The principle of GAs has been applied to generate test data

automatically. The developed system generates optimal test
data automatically on the basis of basis paths in the control
flow graph. The first generation is generated randomly and
then by performing the basic GA steps, fitness of individuals
gets improved. The system first generates the individual test
data randomly, and then calculates fitness for each individual
chromosome (test data) and on the basis of their fitness values
it performs mutation and crossover. This process continues
until all individuals reach to the maximum fitness. The system
performs all operations from initial population to last
generation automatically; it does not require the user
interference. Generating test data automatically reduces the
time and effort of the tester.

1) Deriving test data based on Control flow graph

1. Using the source code of the program, draw the
corresponding control flow graph (manually or
automated).

2. Determine the cyclomatic complexity of the flow
graph.

3. Determine the basis set of linearly independent
paths.

4. Prepare test data that will force the execution of
each path in the basis set.

This set of data generated randomly is the initial
population Input) of the GA process to start.

The following lines of code indicate the ATM withdrawal
task.

1. net_amt = 25000;
2. bal(1,i) = net_amt - wd_amt(1,i);
3. if wd_amt(1,i) < net_amt
4. if bal(1,i) < min_bal
5. fail_bal(1,k) = bal(1,i);

else
6. suc_bal(1,p) = bal(1,i);
7. test_data(1,p) = wd_amt(1,i);

Control flow graph construction for ATM withdrawal task for
source code shown above (target path) is shown in Figure-3.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.49 e-ISSN: 2251-7545

330

Figure-3: Control flow graph for ATM withdrawal.

Table-3: Alphabetical representation of Predicate Nodes in CFG for

Fig. 3

2) Genetic algorithm for test data generation

The following steps show the algorithmic approach
followed to generate test data for the basis path derived from
CFG using GA.Figure-4 shows the schematic representation
of test data generation using GA.
Algorithm:
Input: Randomly generated numbers (initial population act as
test data) based on the target path to be covered.
Output: Test data for the target path.

1. Gen = 0
2. While Gen < 500
3. do
4. Evaluate the fitness value of each chromosome based

on the objective function.
5. Use Elitism as selection operator, to select the

individuals to enter into the mating pool.
6. Perform two-point cross over on the individuals in

the mating pool, to generate the new population.
7. Perform bitwise Mutation on chromosomes of the

new population

8. Gen = Gen +1
9. go to Step 3
10. end
11. Select the chromosome having the best fitness value

as the desired result (test data for target path).

Figure-4: Basic flow of test data generation along with GA process.

3) Experimental Settings

The following sets of parameters were considered for test data
generation using GA.

a. Fitness function :
f = 1 / ((abs (suc_bal (i) - min_bal) + 0.05) ^2)

b. Coding : Binary String
c. Length of the string in the chromosome : 15bits
d. Population Size (N) :100
e. Selection method :Elitism
f. Two-point crossover and pc = 0.5
g. Mutation probability(pm) = 0.05
h. Stopping Criteria = number of generation (500)

First set of test data was generated randomly. The test
datathat we derived based on the set of basis paths, depends on

Predicate
Nodes

Alphabetical
Notation

wd_amt A
net_amt X

bal B
min_bal C

Fail D
suc_bal E
test_data F

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.49 e-ISSN: 2251-7545

331

the programs structure with an aim to traverse every
executable statement in the program. The fitness function used
was derived on the basis of branch distance[2]. The input
variables were represented in binary form. The main objective
of using GAs lies in their ability to handle input data which
may be complex in nature. Thus, the problem of test data
generation is treated entirely as an optimization problem. One
of the merits of using GAs is that through the search and
optimization process, test data sets are improved in a manner
that they are close to the input domain.

VI. RESULTS
The approach followed for test data generation for path

testing using GA, the following four basic steps were
processed viz., Control Flow Graph Construction, Target Path
Selection, Test Data generation and Execution, Test Result
Evaluation.

Table-4 shows the fitness value range of test data and the
classification of individual chromosome into their respective
classes based on fitness value in terms of percentage.

Table-4: % Class of Test Data having maximum fitness value

Fitness Value Range % of Test Data

 0 ≤ f(x) < 0.3 61

0.3 ≤ f(x) < 0.7 01

0.7 ≤ f(x) < 1.0 38

Table-4 gives us a clear picture that around 38% of test data
have higher fitness value ‘f(x)’and lie in the range between 1.0
and 0.7. Figure-5 gives the graphical representation of test
data in terms of percentage.

Figure-5: Graphical Representation of fitness value for Table-4.

VII. CONCLUSIONS
In software development life cycle, software testing is one

of the critical phases. So generation of test data
automaticallyis a key step which has a great influence on code
coverage in software testing.

In this paper, a GA based on theory of natural selection was
used to generate test data automatically for feasible basis
paths. After the generation of initial test data randomly, GA

was iterated for 500 generations as in practicality computation
time should be finite. This paper makes use of a fitness
function based on the condition of the predicate node.

The results in thispaper are an indication that GA is more
effective and efficient in generating automated test data rather
than random testing.

The future perspective of the work would be to enhance
automated test data generation for large and complex
programs, as of now the existing methods generate test data
for smaller and simple programs.

Another prospective area of future study would be to
generate test data using a fitness function for multiple paths in
the control flow graph. The test data generated using GA can
be used in code coverage analysis by comparing with other
artificial intelligence techniques such as Particle swarm
optimization, Simulated annealing, Clonal selection algorithm
etc.

REFERENCES
[1] Wang Xibo and Su Na, "Automatic test data generation for path testing

using genetic algorithms," in Proc. 3rd International Conference on
Measuring Technology and Mechantronics Automation (ICMTMA),
2011, pp. 596-599.

[2] Bogdan Korel, "Automated Software Test Data Generation," IEEE
Transactions on Software Engineering, vol. 16, no. 8, pp. 870-879,
August 1990.

[3] Janis Bicevskis, Juris Borzovs, Uldis Straujums, Andris Zarins, and
Edward F. Miller Jr., "SMOTL- A system to construct samples for data
processing program debugging," IEEE Transactions on Software
Engineering, vol. SE-5, no. 1, pp. 60-66, January 1979.

[4] R. Boyer, B. Elspas, and K. Levitt, "SELECT-A formal system for
testing and debugging programs by symbolic execution," SIGPLAN
Notices, vol. 10, no. 6, pp. 234-245, June 1975.

[5] L. Clarke, "A system to generate test data and symbolically execute
programs," IEEE Transactions on Software Engineering, vol. SE-2, no.
3, pp. 215-222, September 1976.

[6] W. Howden, "Symbolic testing and the DISSECT symbolic evaluation
system," IEEE Transactions on Software Engineering, vol. SE-4, no. 4,
pp. 266-278, July 1977.

[7] C. Ramamoorthy, S. Ho, and W. Chen, "On the automated generation of
program test data," IEEE Transactions on Software Engineering, vol.
SE-2, no. 4, pp. 293-300, December 1976.

[8] J. Bauer and A. Finger, "Test plan generation using formal grammars," in
Proc. 4th International Conference on Software Engineering, 1970, pp.
425-432.

[9] W. Jessop, I. Kanem, S. Roy, and J. Scanlon, "ATLAS - An automated
software testing system," in Proc. 2nd International Conference on
Software Engineering, 1976.

[10] N. Lyons, "An automatic data generation system for data base simulation
and testing," ACM SIGMIS Data Base, vol. 8, no. 4, pp. 10-13, 1977.

[11] E. Miller Jr and R. Melton, "Automated generation of testcase datasets,"
SIGPLAN Notices, vol. 10, no. 6, pp. 51-58, June 1975.

[12] D. Bird and C. Munoz, "Automatic generation of random self-checking
test case," IBM System Journal, vol. 22, no. 3, pp. 229-245, 1983.

[13] Glenford J. Myers, The art of software testing, 2nd ed.: Wiley, 2004.
[14] S. Kuppuraj and S. Priya, "Search Based Optimization for Test Data

Generation Using Genetic Algorithms," in Proc of the 2nd International
Conference on Computer Applications, 2012, pp. 201-205.

0

20

40

60

80

0.0 - 0.3 03. - 0.7 0.7 -1.0

Test
Data
(%)

Fitness Value Range

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.49 e-ISSN: 2251-7545

332

[15] Thomas J. McCabe, "A complexity measure," IEEE Transactions on
Software Engineering, vol. 2, no. 4, pp. 308-320, December 1976.

[16] Duran J. W and Ntafos S. C, "An evaluation of random testing," IEEE
Transactions on Software Engineering, vol. 10, no. 4, pp. 438-443, 1984.

[17] DeMill R and Jeff Offutt, "Constraint-based automatic test data
generation," IEEE Transactions on Software Engineering, vol. 17, no. 9,
pp. 900-910, September 1991.

[18] Mansour N and Salame M, "Data Generation for Path Testing," Software
Quality Journal, vol. 12, pp. 121-136, 2004.

[19] Lin J. C and Yeh P. L, "Automatic test data generation for path testing
using GA's ," Information Sciences, vol. 131, pp. 47-64, 2001.

[20] Srivastava P. R and Kim T, "Application of Genetic Algorithm in
Software Testing," International Journal of Software Engineering and Its
Applications, vol. 3, no. 4, pp. 87-96, 2009.

[21] Christoph C Michael, Gary McGraw, and Michael A. Schatz,
"Generating software test data by evolution," IEEE Transactions on
Software Engineering, vol. 27, no. 12, pp. 1085-1110, December 2001.

[22] Wegener J, Baresel A, and Sthamer H, "Evolutionary Test Environment
for Automatic Structural Testing," Information and Software
Technology, vol. 43, pp. 841-854, 2001.

[23] S, Xanthakis; C, Ellis; C, Skourlas; A, Le Gall; S, Katsikas; K,
Karapoulios, "Application of genetic algorithm in software testing," in
Proceedings of 5th International Conference on Software Engineering
and its Applications, Toulouse, France, 1992, pp. 625-636.

[24] Rauf A and Anwar S, "Automated GUI Test Coverage Analysis using
GA," in Seventh International Conference on Information Technology,
2010, pp. 1057-1062.

[25] McMinn P, "Search-based software test data generation: A survey,"
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105-
156, 2004.

[26] Moataz A. Ahmed and Irman Hermadi, "GA based multiple paths test
data generator," Computers & Operations Research , vol. 35, pp. 3107-
3124, February 2007.

[27] Xiajiong Shen, Qian Wang, Peipei Wang, and Bo Zhou, "Automatic
Generation of Test Case based on GATS Algorithm," in IEEE
International Conference on Granular Computing, GRC'09, 2009, pp.
496-500.

[28] Harman Mark, "Automated Test Data Generation using Search Based
Software Engineering," in Second International Workshop on
Automation of Software Test (AST'07), 2007, pp. 1-2.

[29] Malhotra R and Garg M, "On the Applicability of Machine Learning
Techniques for Object Oriented Software Fault Prediction," Software
Engineering : An International Journal (SEIJ), vol. 1, no. 1, September
2011.

[30] J. H. Holland, Adaptation in Nature and Artificial Systems.: Addison-
Wesley, Reading, MA, 1975.

[31] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning.: Addision-Wesley, Reading, MA, 1989.

[32] James D. Kelly Jr and Lawrence Davis, "A Hybrid Genetic Algorithm
for Classification," International Joint Conference on Artificial
Intelligence, pp. 645-650, 1991.

[33] Michael R Blaha and James R Rumbaugh, Object-oriented modeling and
design with UML, 2nd ed.: Pearson, 2005.

