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Abstract — The Software projects become critical 

systems now a days. Measuring software reliability in a 

continuous and disciplined manner leads to accurate 

estimation of project costs and schedules, and improving 

product and process qualities. Also, detailed analysis of 

software metric data gives important clues about the 

locations of possible errors in a programming code. The 

objective of this paper is to establish a method for 

identifying software errors using machine learning 

methods. We used machine learning methods to construct 

a two step model that predicts potentially  modules with 

errors within a given set of software modules with respect 

to their metric data by using Artificial Neural Networks. 

The data set used in the experiments is organized in two 

forms for learning and predicting purposes; the training 

set and the testing set. The experiments show that the two 

step model enhances error prediction performance to 

improve the Software Reliability. 

 

I. INTRODUCTION  

The results of the software reliability measurement are 

usually evaluated with naive methods like regression and 

correlation between values. Some recent models utilize 

machine-learning techniques for error predicting (Neumann, 

2002). But the main drawback of using machine learning in 

software error prediction is the scarcity of data. Most of the 

companies do not share their software metric data with other 

organizations so that a useful database with great amount of 

data cannot be formed. However, there are publicly available 

well-established tools for extracting metrics such as size, 

McCabe’s cyclomatic complexity, and Halstead’s program 

vocabulary. These tools help automating the data collection 

process in software projects to measure the Software 

Reliability. 

The software metric data gives us the values for specific 

variables to measure a specific module/function or the whole 

software. When combined with the weighted error/error data, 

this data set becomes the input for a machine learning  

 

system. A learning system is defined as a system that is said to 

learn from experience with respect to some class of tasks and 

performance measure, such that its performance at these tasks 

improve with experience (Mitchell, 1997). To design a 

learning system, the data set in this work is divided into two 

parts: the training data set and the testing data set. Some 

predictor functions are defined and trained with respect to 

Multi-Layer Perceptron and the results are evaluated with the 

testing data set. 

The second section gives a previous work done and the 

third section deals with dataset used. The fourth section states 

the Research Problem and the fifth section explains our 

proposed model for error prediction. In the sixth section, the 

results of the experiments are shown. The last section 

concludes our work and summarizes the future work to be 

done. 

 

II. RELATED WORK 

A. METRİCS AND SOFTWARE RİSK ASSESMENT 

Software metrics are mostly used for the purposes of 
product quality and process efficiency analysis and risk 
assessment for software projects. Currently there are numerous 
metrics for assessing software risks. The early researches on 
software metrics have focused their attention mostly on 
McCabe, Halstead and lines of code (LOC) metrics. Among 
many software metrics, these three categories contain the most 
widely used metrics. Also in this work, we decided to use an 
evaluation mechanism mainly based on these metrics. 

Researchers have used neural network approach to 
generate new metrics instead of using metrics that are based on 
certain polynomial equations (Boetticher et al., 1993). 
Bayesian belief network is also used to make risk assessment 
in previous research (Fenton and Neil, 1999). Basic metrics 
such as LOC, Halstead and McCabe metrics are used in the 
learning process. There is not a similar relation between the 
number of errors for the pre- and post-release versions of the 
software and the cyclomatic complexity. To overcome this 
problem, Bayesian Belief Network is used for error modeling. 
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B. ERROR PREDICTION AND APPLICATIONS OF 

MACHINE LEARNING 

Error prediction models can be classified according to the 
metrics used and the process step in the software life cycle.  
Most of the error models use the basic metrics such as 
complexity and size of the software (Henry and Kafura, 
1984).The main idea behind the prediction models is to 
estimate the reliability of the system, and investigate the effect 
of design and testing process over number of errors.  

Machine learning algorithms have been proven to be 
practical for poorly understood problem domains that have 
changing conditions with respect to many values and 
regularities.  Since software problems can be formulated as 
learning processes and classified according to the 
characteristics of error, regular machine learning algorithms are 
applicable to prepare a probability distribution and analyze 
errors (Fenton and Neil, 1999; Zhang, 2000). Machine learning 
algorithms can be used over program execution to detect the 
number of the faulty runs, which will lead to find underlying 
errors. Fault relevant properties are utilized to generate a 
model, and this precomputed function selects the properties 
that are most likely to cause errors and errors in the software. 

Clustering over function call profiles are used to 

determine which features enable a model to distinguish 

failures and non-failures (Podgurski et al., 2003). Dynamic 

invariant detection is used to detect likely invariants from a 

test suite and investigate violations that usually indicate 

erroneous state. This method is also used to determine 

counterexamples and find properties which lead to correct 

results for all conditions (Groce and Visser, 2003). 

 

III. METRIC DATA USED 

The data set used in this research is provided by the 

BELL TELEPHONE LABS IV&V S1 Program for Real Time 

Command and Control. The data repository contains software 

metrics and associated error data at the function/method level. 

The data repository stores and organizes the data which has 

been collected and validated by the Metrics Data Program.  

The association between the error data and the metrics 

data in the repository provides the opportunity to investigate 

the relationship of metrics or combinations of metrics to the 

software. The data that is made available to general users has 

been sanitized and authorized for publication through the 

MDP website by officials representing the projects from 

which the data has originated. The database uses unique 

numeric identifiers to describe the individual error records and 

product entries. The level of abstraction allows data 

associations to be made without having to reveal specific 

information about the originating data. 

Some of the product metrics that are included in the data 

set are, McCabe Metrics; Cyclomatic Complexity and Design 

Complexity, Halstead Metrics; Halstead Content, Halstead 

Difficulty, Halstead Effort, Halstead Error Estimate, Halstead 

Length, Halstead Level, Halstead Programming Time and 

Halstead Volume, LOC Metrics; Lines of Total Code, LOC 

Blank, Branch Count, LOC Comments, Number of Operands, 

Number of Unique Operands and Number of Unique 

Operators, and lastly Error Metrics; Error Count, Error 

Density, Number of Errors (with severity and priority 

information). 

After constructing our data repository, we have cleaned 

the data set against marginal values, which may lead our 

experiments to faulty results. For each type of feature in the 

database, the data containing feature values out of a range of 

ten standard deviations from the mean values are deleted from 

the database.  

Our analysis depends on machine learning techniques so for 

this purpose we divided the data set in two groups; the training 

set and the testing set. These two groups used for training and 

testing experiments are extracted randomly from the overall 

data set for each experiment by using a simple shuffle 

algorithm. This method provided us with randomly generated 

data sets, which are believed to contain evenly distributed 

numbers of error data. 

 

IV. PROBLEM STATEMENT 

Two types of research can be studied on the code based 

metrics in terms of error prediction. The first one is predicting 

whether a given code segment contain errors or not. The 

second one is predicting the magnitude of the possible error, if 

any, with respect to various viewpoints such as density, 

severity or priority. Estimating the error causing potential of a 

given software project has a very critical value for the 

reliability of the project. Our work in this research is primarily 

focused on the second type of predictions. But it also includes 

some major experiments involving the first type of 

predictions.  

Given a training data set, a learning system can be set up. 

This system would come out with a score point that indicates 

how much a test data and code segment is defected. After 

predicting this score point, the results can be evaluated with 

respect to popular performance functions. The two most 

common options here are the Mean Absolute Error (mae) and 

the Mean Squared Error (mse). The mae is generally used for 

classification, while the mse is most commonly seen in 

function approximation.  

In this research we used mse since the performance 

function for the results of the experiments aims second type of 

prediction. Although mae could be a good measure for 

classification experiments, in our case, due to the fact that our 
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output values are zeros and ones we chose to use some custom 

error measures. We will explain them in detail in the results 

section. 

V. PROPOSED MODEL AND METHODOLOGY 

The data set used in this research contains error density 

data which corresponds to the total number of errors per 1-000 

lines of code. In this research we have used the software 

metric data set with this error density data to predict the error 

density value for a given project or a module. Artificial neural 

networks approach is used to predict the error density values 

for a testing data set. 
Multi-layer perceptron method is used in ANN 

experiments. Multilayer perceptrons are feedforward neural 
networks trained with the standard backpropagation algorithm. 
Feedforward neural networks provide a general framework for 
representing non-linear functional mappings between a set of 
input variables and a set of output variables. This is achieved 
by representing the nonlinear function of many variables in 
terms of compositions of nonlinear functions of a single 
variable, which are called activation functions (Bishop, 1995).  

In the experiments we first applied ANN approach to 
perform a regression based prediction over the whole data set. 
According to the experiment results we calculated the 
corresponding mse values. Mse values provide the amount of 
the spread from the target values. To evaluate the performance 
of each algorithm with respect to the mse values, we compared 
the square root of the mse values with the standard deviance of 
the testing data set. The standard deviation of the data set is in 
fact the mse of it when all predictions are equal to the mean 
value of the data set. To declare that a specific experiment’s 
performance is acceptable, its mse value should be fairly less 
than the variance of the data set. Otherwise there is no need to 
apply such sophisticated learning methods, one can obtain a 
similar level of success by just predicting all values equal to 
mean value of the data set. 

The first experiments that are done using the whole data 

set show that the performance of both algorithms are not in 

acceptable ranges as these outcomes are detailed in the results 

section. The data set includes mostly non-defected modules so 

there happens to be a bias towards underestimating the error 

possibility in the prediction process. Also it is obvious that 

any other input data set will have the same characteristic since 

it is practically likely to have much more non-defected 

modules than defected ones in real life software projects. 

The three type of experiments explained above guided us 

in proposing the novel model for error prediction in software 

projects. According to the results of these experiments, better 

results are obtained when first a classification is carried out 

and then a regression type prediction is done over the data set 

which is expected to contain errors. So the model has two 

steps, first classifying the input data set with respect to 

whether it contain errors or not. After this classification, a new 

data set is generated with the values that are predicted as 

defected. And a regression is done to predict the error density 

values among the new data set. 

The novel model predicts the possibly modules contain 

errors in a given data set. So the model helps concentrating the 

efforts on specific suspected parts of the code so that 

significant amount of time and resource can be saved in 

software quality process. 

 

 

 

 

Figure: Architecture of Neural Network 

 

VI. RESULTS 

In this research, the training and testing are made using 
MATLAB’s MLP based on a model for classification and 
regression. The data set used in the experiments contains 6-000 
training data and 2-000 testing data. The resulting values are 
the mean values of 30 separately run experiments. 

In designing the experiment set of the MLP algorithm, a 

neural network is generated by using linear function as the 

output unit activation function. 32 hidden units are used in 

network generation and the alpha value is set to 0.01 while the 

experiments are done with 200 training cycles.  
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A. REGRESSION(DATA SET) 

The average variance of the data sets which are 

generated randomly by the use of a shuffling algorithm is 1-

402.21 and the mean mse value for the ANN experiments is 1-

295.96. This value is far from being acceptable since the 

method fails to approximate the error density values. Figure 1 

depicts the scatter graph of the predicted values and the real 

values. According to this graph, it is clear that the method 

potentially does faulty predictions over the non defected 

values. The points laying on the y-axis show that there are 

unacceptable amount of faulty predictions for non defected 

values. Also apart from missing to predict the non defected 

ones, it is obvious that the method is biased towards smaller 

approximations on the predictions for defected items because 

vast amount of predictions lay under the line which depicts the 

correct predictions. 

 

 

Figure 1. The predicted values and the real values in ANN 

experiments 

 

 

B. REGRESSION OVER THE DATA SET(ONLY DEFECTED 

ITEMS) 

 

The second type of experiments are done with input data 
sets which contain only defected items.  

The average variance of the data sets used in the ANN 
experiments are 1-637.41 and the mean mse value is 262.61. 
According to these results the MLP algorithm approximates the 

error density values well when only defected items reside in 
the input data set. It also shows that the dense non defected 
data effects the prediction capability of the algorithm in a 
negative manner. Figure 2 shows the predicted values and the 
real values after an ANN experiment run. The algorithm 
estimates the error density value better for smaller values as 
seen from the graph, where the scatter deviates more from the 
line that depicts the correct  predictions for higher values of 
error density. 

Figure 2. The predicted values and the real values in ANN 
experiments where the input data set contains only defected 

items 

C.  CLASSIFICATION(DEFECTEDNESS) 

 

In the ANN experiments the clustering algorithm is partly 

successful in predicting the defected items. The mean 

percentage of the correct predictions is 88.35% for ANN 

experiments. The mean percentage of correct defected 

predictions is 54.44% whereas the mean percentage of correct 

non defected predictions is 97.28%. These results show that 

the method is very successful in finding out the really defected 

items. It is capable of finding out three out of every four 

defected items. 

As a result, it can be deduced that we divide the error 

prediction problem into two parts. The first part consists of 

predicting whether a given module contains errors or not. And 

the second part is predicting the magnitude of the possible 

error if it is labeled as defected by the first type. We 

understand that predicting the error density value among a 

data set containing only defected items brings much better 
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results than the case that the whole data set is used where an 

intrinsic bias towards lessening the magnitude of the error 

arises. Also by dividing the problem into two separate 

problems, and knowing that second part is successful enough 

in predicting the error density, it is possible to improve the 

overall performance of the learning system by improving the 

performance of the classification part. 

 

 

VII. CONCLUSION 

In this research, we proposed a new error prediction 

model based on machine learning methods. Since most 

modules in the input data have zero errors (80% of the whole 

data), applied machine learning methods fail to predict scores 

within expected performance. Even if an algorithm claims that 

a test data doesn’t contain errors though it did not try to learn 

at all, the 80% success is guaranteed.  Therefore logic behind 

the learning methodology fails. Different methodology which 

can manage such data set for software metrics is required. 

By using our two step approach, along with predicting 

which modules contain errors, the model generates estimations 

on the error magnitudes. The software practitioners may use 

these estimation values in making decisions about the 

resources and effort in software quality processes such as 

testing. Our model constitutes to a well risk assessment 

technique in software projects regarding the code metrics data 

about the project. 

As a future work, different machine learning algorithms 

or improved versions of the used machine learning algorithms 

like decision trees and neuro-fuzzy systems may be included 

in the experiments. Also this model can be applied to other 

risk assessment procedures which can be supplied as input to 

the system. Certainly these risk issues should have 

quantitative representations to be considered as an input for 

our system. 
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