
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.24 e-ISSN: 2251-7545

149

Design Patterns and Documentation Recovery

based on Attributes

 Afnan Bashir1, Ghulam Rasool2 , Komal Bashir3, Ayesha Haider Ali4, Faria Kanwal5

*1, COMSATS Institute of Information Technology, Lahore, Email : afnan.bashir@hotmail.com

2, Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology,

Email : grasool@ciitlahore.edu.pk

3, LCWU, Email : ko_junaid@yahoo.com

4, LCWU, Email : ayesha.iqbal@gmail.com

5, LCWU, Email : faria.kanwal@gmail.com

Abstract— The accurate recovery of design patterns from

software applications is still debatable and it depends on

different types of analysis methods performed on the source code

during recovery of patterns. Structural, behavioral and semantic

analysis methods are used to extract patterns from source code.

Most approaches used combination of these analysis methods to

extract patterns from different applications but the recovery

process becomes heavyweight. We present a novel design pattern

recovery technique based on attributes from .Net applications

using only semantic analysis. Implemented attributes enhance

the comprehension of source code related with design patterns. A

prototyping tool is developed to realize the concept of approach.

Keywords— Design patterns, Reverse engineering, Patterns

recovery, Patterns evaluation, Documentation recovery

I. INTRODUCTION

Design patterns are recurring solutions to standard

software problems and they have been used in different

applications such as security, web, services, architectures, user

interfaces etc [12]. Due to continuous evolutions in software

applications, the original design structure is being altered very

often. Up gradations of source code is mostly not followed by

modifications in the supporting documentation. If developers

are given the responsibility to keep source code and

documents consistent, this would require extra efforts from

developers which results in decreased productivity.

The recovery of design patterns can provide strong

indications about the rationale behind the system’s design and

it helps in the reverse engineering, refactoring and

maintenance domains. Each pattern solves a design problem

that occurs in software development applications. Mostly

design documents are obsolete or missing in legacy systems.

Even if the documents are available, they may not match

exactly to the source code that may have been changed over

time. Due to missing information about the design patterns in

source code the restructuring and maintenance becomes

arduous.

In maintenance and up-gradation phases the developers

require information about the existing structure of an

application and implemented design practices. The comments

in the source code and documentation can give clues about

intention of developers in the source code, but comprehension

of complete architecture of a system under analysis is very

hard. Maintainability and comprehensibility of an application

is directly affected by missing documentation and information

about implemented architecture. Lack of information about

design patterns implemented in the source code can result in

possible incorrect modifications of implemented patterns. This

incorrect modification would lead to weakening the structure

of an application. The purpose of this paper is to present an

approach that facilitate developers in the integration of

metadata to source code and recover the implemented design

patterns from the source code with the help of embedded

metadata. The presented approach is very simple in terms of

implementation that it does not cause extra burden on

developers.

Throughout entire software design recovery research era,

many recovery techniques have been developed and few [6, 9,

10, 11] suggested the use of annotations/meta-information in

the source code. Embedding of meta-information in the source

code requires extra efforts from developers. The key concerns

for an acceptable approach based on meta-information are

following:

 How to integrate semantic information in the source

code in such a way that it does not require extra

efforts from developers?

 Recovery of necessary documentation within the

code with recovery of patterns.

 Standardization of meta-information for each pattern.

 Automatic embedding of meta-information in the

source code.

 The accuracy in recognized design patterns instances.

mailto:grasool@ciitlahore.edu.pk
mailto:ko_junaid@yahoo.com
mailto:ayesha.iqbal@gmail.com

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.24 e-ISSN: 2251-7545

150

To address the above mentioned issues many techniques

[1, 2, 5, 6, 7, 8, 9, 10, 11, 16, 19] have been presented in the

past. We want to clarify that we included most relevant design

pattern recovery techniques which focused on embedding

meta-information during forward engineering of applications

in this paper. The techniques along with the tools that are used

to recover the design patterns vary across development

platforms as well as the variations in design pattern

implementations.

Without any tool support the detection of instances of a

pattern and relation among the roles present in the source code

is very difficult. A developer must be provided with a good

presentation of all possible participants of each pattern’s

instances present in source code. Moreover, due to the lack of

ability in identification of participants of a particular pattern it

becomes almost impossible to prevent that code block from

being altered in such a way that resultant code block would

lose pattern integrity and benefits that were gained by the

implementation of design pattern are, lost subjecting system to

weak architecture [6]. We focus on integration of meta

information related with design patterns in the source code

which keep source code and documentation of design patterns

consistent and enhance the comprehension of source code.

The rest of paper is organized as follows:

 The section II discusses related work on design

pattern recovery approaches which are very similar to

presented approach. Section III presents the concept,

architecture and detailed implementation of proposed

approach. Section IV provides insights about the prototyping

tool developed as proof of concept for presented approach.

The evaluation of approach is discussed in section V. Section

VI highlights the significance and limitations of presented

approach. Conclusion and future extensions are discussed in

section VII.

II. RELATED WORK

Meffert [11] suggested the implementation of annotations

to aid the process of metadata integration into source code

fragments. The applied approach aids developers in the

selection of the appropriate design pattern implemented. In

order to specify the implementation reasoning of some

particular source code fragment, the author introduced the

usage of annotations. The author emphasize that intents are

useful for the support of design patterns implementations;

however author did not made any attempt to recover or

validate possible pattern implementations within the source

code.

Sabo et al. [10] suggested an approach that helped

preserving the original structure of implemented design

patterns during evolution of an application. The suggested

approach aims to separate the intent of the implemented

patterns participants in the source code by the use of

annotations. The approach also helps in determination of the

validity of the applied pattern after the regular maintenance

phase. We got inspiration from this work and implemented

attributes related with design patterns in the source code.

Rasool et al [6] presented design pattern recovery

approach based on annotations in the source code. Authors

implemented multiple searching techniques such as SQL

queries, source code parsers and regular expressions in the

prototyping tool. They developed an add-in for “Enterprise

Architect” and extracted structural information stored in SQL

database. In this approach authors also focused on recovering

variants of a pattern implementation. The recovery process

was composed of the structural information as input to the

source code parsing engines. Source code parsers were used

for detail analysis of source code. In order to reduce search

space and increase the probability of detection authors

introduced custom annotations embedded within source code

in such a way that they integrate crucial information.

 Kajsa et al [9] presented an approach for design pattern

support based on annotations and feature models. Authors

purposed annotations for different design patterns. The author

presented aliases for the distinction between same design

patterns implementations according to their intent. The

authors claim that the presented approach is also capable of

handling the variants of design patterns. The implementation

of approach is done on Eclipse Framework and templates are

developed in JET framework. However, Java does not allow

the annotation with identical name which is a major limitation

of this approach.

III. PATTERN RECOVERY APPROACH

Various authors [6, 9, 10, 11] recommend the

implementation of attributes or annotations for the purpose of

embedding semantic metadata to source code fragments. This

information can facilitate in design pattern recovery and

documentation very amicably. Our approach suggests the use

of custom attributes according to each design pattern.

Following a particular standard these custom attributes can be

developed by a developer himself or can be selected from

provided library which is developed to reduce the

development time.

The presented approach is capable of identifying the roles

that each class plays in multiple pattern implementations. A

participant can have multiple attributes implementations

according to each role which make our approach capable to

recognize overlapping roles of different classes in multiple

design patterns. The approach is divided into three key phases

which are explained below:

A) IMPLEMENTATION PHASE

The major purpose of this phase is embedding metadata

information necessary to participants with the help of custom

attributes provided in Spice Library. The implementation

phase utilizes the pre-defined attributes from spice library.

These attributes facilitate developers to implement the custom

attributes defined according to standard GoF patterns

specifications. These attributes are manually added on

participants of design patterns implemented in the source

code. The result of attributes implementation is a source code

with embedded metadata information. This code can be then

compiled to obtain binaries with metadata integration. During

the compilation process metadata information is not lost.

The embedded semantics aid the retrieval of metadata in

design pattern recovery process. The suggested custom

attributes can be applied on all existing Gang of Four design

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.24 e-ISSN: 2251-7545

151

patterns as well as on custom design practices. In order to

prevent chances of conflicts with the pre-defined attributes

implemented in .NET Framework custom attributes can be

used. Attribute [17] is the base class in .NET Framework and

it has a very powerful feature that it allows developers to

extend it and create their custom Type [18].

Custom attributes facilitate developers in implementation

of attributes other than pre-defined attributes. For the

suggested approach it is necessary to create custom attributes

in order to increase accuracy and to reduce any possible

conflicts with pre-defined system attributes that may hinder in

design recovery phase in later stages.

Fig. 1 Overview of Implementation phase

The above Fig1 illustrates the implementation phase in

detail. The implementation phase is carried out manually

during the time of application development. The following

Spice library is key component of this phase.

1) Spice Library

In order to create and implement the custom attributes for

each design pattern, extra burden comes on developers. This

can cause trouble achieving milestones within specified time

period. To reduce the additional development burden added

by this suggested approach we developed the Spice Library.

Spice library contains pre-defined custom attributes developed

considering each pattern present in the Gang of Four patterns.

The custom attributes defined in Spice Library are based

on rules that help the recovery process. Developers can create

their custom attributes keeping the rules under consideration.

The implementation of attributes suggested in Spice Library

improves the comprehension of source code. Custom

attributes suggested in Spice Library act as bucket that

collects all the vital information necessary for design pattern

recovery as well as the intent of implementation of that

particular design pattern code fragment. The example of

custom attributes on singleton design pattern is explained as

follows:

Custom attributes implemented on client

Custom attributes implemented on Base Class

B) EXTRACTION PHASE

This phase targets the extraction of possible design

patterns implemented in the source code. It accepts binaries of

application on which the annotations were implemented with

proper metadata information. Extraction phase takes into

account the principles of Reflection [13]. Reflection is very

powerful feature introduced by Microsoft in .Net framework.

Reflection [13] allows you to retrieve information about the

assembly that may be an executable or dynamic link library. It

can help extracting metadata related to classes, interfaces and

value types. Reflection is useful for both static and dynamic

analysis for design pattern recovery process. It is not

necessary to perform implementation phase each time. Fig 2

provides the overview of the extraction phase.

To extract all the custom attributes declared in source

code the assembly is loaded into reflection object. The

reflection object loads the assembly and extracts

[SpiceLibrary.Creational_Patterns.Singleton_Pattern.Singlet
on(3, "Used to connect to server it should be same instant
for all requests", "Base")]
 public class LoadBalancer
 {
 private static readonly LoadBalancer _instance =
new LoadBalancer();
 // Type-safe generic list of servers
 private List<Server> _servers;
 private Random _random = new Random();
 private LoadBalancer()
 {
 _servers = new List<Server>
 {
 new Server{ Name = "ServerI", IP =
"120.14.220.18" },
 new Server{ Name = "ServerII", IP =
"120.14.220.19" },
 new Server{ Name = "ServerIII", IP =
"120.14.220.20" },
 new Server{ Name = "ServerIV", IP =
"120.14.220.21" },
 new Server{ Name = "ServerV", IP =
"120.14.220.22" },
 };
 }
 public static LoadBalancer GetLoadBalancer()
 {
 return _instance;
 }
 public Server NextServer
 {
 get
 {
 int r = _random.Next(_servers.Count);
 return _servers[r];
 }
 }
 }

[SpiceLibrary.Creational_Patterns.Singleton_Pattern.Client(3,

"Client Load Balancer", "Load Handlers")]

class worker
 {
 public void work()
 {
 //listen to server1
 LoadBalancer b1 = LoadBalancer.GetLoadBalancer();
 //listen to server2
 LoadBalancer b2 = LoadBalancer.GetLoadBalancer();
 }
 }

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.24 e-ISSN: 2251-7545

152

the metadata. The metadata of attributes remains intact even

after compilation. Once Custom attributes are extracted they

are analyzed to filter out the possible pattern’s candidates.

These are further sorted to arrange attributes according to

pattern category and fed into pre-computation engine that

extracts necessary information about attributes. The pre-

computed data and list of organized pattern attributes is fed

into “pattern analysis and recognition” engine to extract and

validate the possible instances of a pattern.

Fig.2 Overview of Extraction Phase

C) PATTERN ANALYSIS AND RECOGNITION ENGINE

This phase is most important during pattern recovery

process. It accepts the input (sorted according to type and

family ID) from first phase of extraction process, where all the

possible pattern candidates were extracted from assembly. The

core purpose of this engine is to take all possible candidates

and evaluate their legitimacy. This helps to decide that either

selected candidate is a valid pattern implementation, a

misplacement of attributes or in-accurately implemented

design pattern. This engine performs analysis according to

given functional definition. The recognition engine is

responsible for the detection, extraction and validation of

design patterns present in an application. This engine consists

of two major phases discussed as follows:

1) PRE-ANALYSIS COMPUTATIONS

In order to optimize the analysis and validation phase some

computations are performed prior to analysis phase. Pre-

analysis phase involves the extraction of critical information

which would help reducing the extra efforts obtaining such

data during analysis process. The applied technique helps

reduction of complexity while increasing the efficiency and

results of process. This information is crucial for analysis. The

pre-analysis calculates following information:

 Number of methods present in that namespace

 Family ID of a pattern candidate that identifies its

group in same category

 Title of a pattern candidate

 Comments included in a pattern candidate

 Name of a Loaded Assembly

 With the help of Reflection extract name of class in

which participants of a pattern exists.

 Get name of a possible pattern. This is decided on

basis of implemented attribute’s structure. This is for

reducing search space and it is validated in later

phase.

 Get names of all participants

The above extracted data is stored in a custom type called

CodeData and is used for analysis and validation.

2) ANALYSIS AND VALIDATION PHASE

This phase is responsible for determining the legitimacy of

a candidate pattern. Provided with the information from pre-

analysis phase, this phase utilizes that information to extract

relationships among classes, interfaces, delegation and class

inheritance. This involves validation of a candidate according

to particular design pattern function definition pre-defined

within the engine. Writing a custom function definition

requires skills and information about minimum set of rules

that should be met before it is considered a valid pattern

implementation. Function definitions require different set of

instructions. Fig 3 presents the flow chart diagram for analysis

and validation of a proxy pattern.

Fig3. Flow diagram for proxy pattern detection

IV. PROTOTYPING TOOL

A prototyping tool called SPE (Spice Pattern Extractor)

was developed as a proof of concept for the suggested

approach. The current implementation of tool focuses on

patterns belonging to creational and structural categories of

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.24 e-ISSN: 2251-7545

153

the GoF patterns. Most design pattern recovery techniques are

supported by different tools for validation of their results.

Each tool is developed with a particular methodology and it is

very difficult to integrate one tool with another. Most tools

designed for design pattern recovery have very little or even

no support for the process of documenting the existence and

usage of patterns present in the source code. The tools differ

by various aspects i.e. algorithms, pattern descriptions, pattern

representation, precision, recall etc. The following are points

that have been framed for our prototype tool:

1) The output presentation of recovered patterns should

facilitate source code comprehension process.

2) Tool should be flexible and can be extended without

problems.

3) Modularity should be in such a way that modification

in one module does not affect other modules.

4) Tool should be able to recover patterns only on the

basis of semantic analysis.

A. THE CONCEPT AND ARCHITECTURE

The tool utilizes the metadata for the recovery of design

patterns. SPE does not use source code parsers to extract

information for analysis. It performs analysis in three steps:

extraction, analysis and validation as discussed in previous

section. Extraction reads the binaries and extracts the basic

structure of participants on which attributes are applied. The

extracted data ensures the availability of necessary structural

information required by analysis step. The analysis step

utilizes the information provided from previous step to get the

minimum participants that a pattern implementation should

have. This information is contained in Spice Library and is

embedded during the time of attribute declaration. This step

filters out the patterns which satisfy the minimum participants

condition. Accepted patterns are stored in a list of custom

structure. Validation is the process of verifying certain rules

that a pattern should meet before it can be declared a valid

pattern implementation.

B. FLEXIBILITY AND CUSTOMIZATION

One of the major considerations during the development

of SPE was modularity. SPE is based on various modules as

discussed in section VI and illustrated in figure 4. The benefit

of using modular design is the ability to modify a module

without effecting other modules or components. SPE is highly

customizable and user with basic programming skills set can

create and implement function definitions that can help in

recognition of custom design practices. SPE also allows user

to fine tune the function definitions and custom attributes

implemented in spice library. Custom function definitions can

extend the ability to detect broader range of patterns.

Fig.4 Overview of Tool Architecture

C. ACCURACY AND EXPERIMENTATION

A good recovery tool should be able to match and extract

the required design patterns accurately with high precision and

recall rate. The precision and recall metrics help in the

evaluation of information extraction techniques including

design pattern recovery approaches. Accuracy of an approach

is determined by precision and recall metrics. SPE was tested

on an open source LAN messenger application to extract the

design patterns implemented in this application. Prior to

extraction source code was implemented with the custom

attributes from Spice Library for the purpose of embedding

necessary metadata information. During the recovery process

all design patterns were successfully recovered on which

attributes were applied. The tool recovered patterns with good

precision and accuracy however it is necessary to compare

SPE with some other commercial tools and revalidate the

results obtained by SPE on few other commercial and

industrial applications. Due to lack of trusted benchmarks the

results obtained after the analysis were manually analyzed.

V. EVALUATION OF APPROACH

Validation is very important step for analyzing worth and

performance of purposed approach. This paper has introduced

a novel approach for design patterns recovery and nothing

relative has been done in the past to the best of our

knowledge. Our approach relies on attributes for the detection

of design patterns. Function definitions help the tool in the

validation of the recovered pattern’s candidates to confirm

their legitimacy. We have focused on developing pattern

recovery process to recover patterns from C# applications.

The scalability of our suggested approach is validated by the

experiments we have performed on an open source application

named “Squiggle” [14]. Due to absence of trusted benchmarks

the comparison with any other approaches was not possible.

The results obtained by SPE were manually validated.

Considering ourselves as pioneers of the presented

approach, we adapted the manual detection and validation of

source code to compare results obtained from tool. We spent

long hours to review source code manually and implemented

suitable attributes from Spice Library on the analyzed

patterns. The source code was then compiled to obtain the

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.24 e-ISSN: 2251-7545

154

binaries which were later on provided to SPE for detection of

implemented design patterns.

The results obtained were compared with the patterns on

which attributes were applied. SPE did not miss any instance

in examined application; however there is a need for the

experimentation on different commercial and industrial

applications. Our suggested pattern recognition approach

extracted the implanted design patterns and other artifacts

participating in a pattern implementation.

A. RESULTS

Precision and Recall are two very important metrics for

the evaluation of all design pattern detection approaches [4].

Precision and recall have been part of quality assurance of

systems for a long time. The accuracy of an approach is

determined by the relationship between precision and recall

[4]. In ideal conditions precision is directly proportional to

recall but these ideal conditions are hard to achieve [21]. Both

precision and recall are heavily dependent on the nature of

design pattern recovery approach implemented in a tool.

Table1 presents the results of our prototyping tool.

TABLE 1
 RECOVERED DESIGN PATTERNS INSTANCES

Pattern Name Attribute Implemented Detected by SPE

Creational Patterns

Abstract Factory 0 0

Builder 0 0

Factory Method 0 0

Prototype 2 2

Singleton 1 1

Structural Patterns

Adapter 1 1

Bridge 0 0

Composite 0 0

Decorator 0 0

Façade 0 0

Flyweight 0 0

Proxy 1 1

The Precision and recall metrics are calculated by true

positives, true negatives, false positives and false negatives

[4].Precision and recall are 100 % which yields F-Score of

100%. The only option to validate our approach was to

populate our own benchmark by analyzing source code

manually.

VI. SIGNIFICANCE AND LIMITATIONS OF APPROACH

The presented approach is initial step in software design

pattern recovery from .Net applications. The patterns are

recovered only on basis of semantic analysis. No source code

parsing had been performed and yet results are very precise as

discussed in previous section.

Following are few major points that make our approach much

vibrant.

 No source code parsers are required for the extraction of

design patterns.

 Enhanced source code quality by addition of

attributes/annotations which helped improvement in

comprehension of code.

 Metadata and semantics were present as object. This

helps to achieve fast, robust and accurate solution for

design patter recovery.

 Allows user to extend their design implementations

beyond regular GOF patterns.

 Provides insights about the location of design patterns

existence and their participants in various different

classes or interfaces with their metadata information.

Design pattern recovery approaches cannot be generalized

and one solution cannot fit all problems. Our suggested

approach contributes to the problems like accuracy, flexibility,

precision and extensibility in design pattern recovery, but on

the other hand this approach is subject to some limitations.

Following are the plausible limitations of suggested approach:

 Approach is highly dependent on reference that one

binary contains. If any reference is lost then recovery

process may not yield proper results.

 The implemented attributes should follow particular

format as implemented in Spice Library.

 This approach only recovers patterns from the source

code in which defined attributes are implemented.

VII. CONCLUSIONS FUTURE WORK

The main purpose of this paper is recovery of design

patterns and related documentation from C# applications

based on attributes. The presented approach reflects

modularity which makes it a sustaining approach against all

future challenges. The applied approach utilizes the metadata

embedded in source code with the help of attributes provided

in Spice Library for extraction of patterns. The approach is

easily customizable that it can handle variants of design

patterns. The experiments are performed on open source

library squiggle[14] by using our prototyping tool SPE. Due to

the absence of trusted benchmarks related to approach, the

validation of results was a challenge. Validation is performed

by calculating precision, recall and F-Score. The results

obtained are remarkably accurate. We plan to extend approach

on all types of GOF and other types of patterns in future. The

prototyping tool will be used as add-in with Sparx Systems

Enterprise Architect Modeling tool[20] to support the

visualization of recovered results. Finally, approach will be

evaluated from academia and industry for its efficiency and

effectiveness.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.24 e-ISSN: 2251-7545

155

REFERENCES

[1]. C. Kramer and L. Prechelt, ”Design recovery by automated search for

structural design patterns in object oriented software”, in Third
Working Conference on Reverse Engineering, Amsterdam. March 1996,

pp.208-215

[2]. G. Antoniol, R. Fiutem and L. Cristoforetti, “Design Pattern Recovery
in Object-Oriented Software”, in 6th International Workshop on

Program Comprehension. 1998. pp.153-160.

[3]. K. Kontogiannis, R. De Mori, R. Bernstein, M. Galler, and Ettore
Merlo, “Pattern matching for clone and concept detection”, in Journal

of Automated Software Engineering. 1996. pp.150-155.

[4]. Ghulam Rasool, Detlef Streitfdert, “A Survey on Design Pattern
Recovery Techniques”, in IJCSI International Journal of Computer

Science Issues, Vol. 8, Issue 6, 2011, pp. 251-260.
[5]. J. Dong, J. Zhao, and Y. Sun, “A Matrix based Approach to

Recovering Design Patterns”, in IEEE transactions on Systems, Man

and Cybernatics, Vol 39. Nov 6, 2009. pp. 1271-1282
[6]. G. Rasool, I. Philippow, P. Mader, “Design Pattern Recovery Based on

Annotations”, in International Journal of advances in Engineering

Software, Vol 41, Issue 4.2010. pp. 519-526

[7]. Adrian Paschke, ―A Semantic Design Pattern Language for Complex

Event Processing‖, Association of Advancement in Artificial

Intelligence (www.aaai.org), 2009, pp. 54-60
[8]. Awny Alnusair and Tian Zhao, Towards a Model-driven Approach for

Reverse Engineering Design Patterns‖, In Proceedings of the 2nd

International Workshop on Transforming and Weaving Ontologies in
Model Driven Engineering (TWOMDE 2009), Denver, Colorado, USA,

October 4, 2009, pp. 1-15

[9]. Peter Kajsa , Pavol Návrat, “Design Pattern Support Based on the
Source Code Annotations and Feature Models”, in SOFSEM 2012:

Theory and Practice of Computer Science Volume 7147, 2012, pp 467-

478.
[10]. Sabo, M., Porubän, J, “Preserving Design Patterns using Source Code

Annotations”, in Journal of Computer Science and Control

Systems,2009, pp.53–56
[11]. Meffert, K, “Supporting Design Patterns with Annotations”, in

Proceedings of the 13th Annual IEEE International Symposium and

Workshop on Engineering of Computer Based System, ECBS 2006.
IEEE Computer Society, Washington, DC (2006) , pp. 437–445

[12]. Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides,

“Design Patterns: Elements of Reusable Object Oriented Software”,
Addison-Wesley Publishing Company, Reading, MA, 1995, ISBN:

0201633612.

[13]. Reflection. http://msdn.microsoft.com/library/system.reflection.aspx

[14]. Squiggle (Open Source LAN Messenger). http://squiggle.codeplex.com/

[15]. Object. http://msdn.microsoft.com/en-us/library/system.object.aspx

[16]. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur and
Yarden Kartz, ―A Practical OWL-DL Reasoner, In Journal of Web

Semantics: Science, Services and agents on the World Wide Web,

Volume 5, Issue 2, 2007, pp. 51-53
[17]. Attribute. http://msdn.microsoft.com/en-us/library/e8kc3626.aspx

[18]. Type. http://msdn.microsoft.com/en-us/library/system.type.aspx

[19]. K. Meffert, I. Philippow “Supporting Program Comprehension for
Refactoring Operations with Annotations”, In Proceedings of the 2006

conference on New Trends in Software Methodologies, Tools and

Techniques: Proceedings of the fifth SoMeT_06, 2006, pp.48-67
[20]. Sparx Systems Enterprise Architect: http://sparxsystems.com/

[21]. Scientific Tool works Inc. Understand for C++, 2003,

http://www.scitools.com/

