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Abstract— Mobile robots visual control system does suffer 

from a number of issues, as due to speed and complexity. 

Complicated kinematics relations,  in addition,  the needed 

computational time to execute a task, are also some related 

issues. This manuscript highlights a mechanism through which 

to approximate an inter-related visual kinematics relations 

that are part of visual servo closed loop system through an 

Artificial Neural Networks (ANN) system for a mobile robot 

visual servoing.  The methodology followed and being applied 

to KSU-IMR mobile robot project,  is based on the concept of  

integration of Neural Networks with an Image Based Visual 

Servoing system. ANN have been fully employed  here to learn 

and approximate relations that relate a target movements to 

the mobile robot movement (POWERROB,[1]),  through a 

visual servo.  

Keywords-component; Visual Servoing; ANN; Epipolar 

Gemetry;  KSU-IMR Robotics System.  

I.  INTRODUCTION 

     The manuscript is presenting a research frame work being 
done at King Saud University, KSA, and is related to  an 
image-based visual servoing technique for driving a mobile 
robot to some desired mobile localities (set-point), which is 
specified through a desired image previously acquired by 
camera.  Vision guided mobile robotics systems have been 
introduced by researchers worldwide. The main focus of 
VGM research directions are how to let a mobile robots 
navigate in an unstructured environment without collusions.  
Mobile robot localization and mapping,  is considered as the 
process of simultaneously tracking the position of a mobile.  

 
Figure 1.  KSU-IMR mobile with unicycle kinematics  

carrying a camera. 

 
     Figure 2.  Target images as seen by the KSU-IMR two cameras system. 

 

II. LITERATURE WORKS AND RELATED RESEARCH 

 

A.) Background:  

     Lin et. al. in [2], stated that “minimizing the artificial 

potential energy of the mobile robot on a local 3D map 

plans a relay position and an approaching path. A self-
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learning controller using adaptive fuzzy systems is designed 

to manipulate the dynamic behavior of the mobile robot in 

tracking a planned path. Using Lagrange formalism, a 

mathematical model describing the autonomous mobile 

robot is derived for simulation study. Simulation and 

experimental results are presented”,   Lin et. al. [2].   

     Furthermore, Bai  et. al. in [3], gave an introduction for 

an obstacle detection approach based on stereo vision. They 

stated, “The aim of the approach is to detect a real 

environment to allow a mobile robot to find a safe path even 

in complex scenarios.  The novelty is represented in terms 

of the two-stage perception structure”,  Bai et. al [3].   

Furthermore,  Bais et. al.  [4]  have also introduced  an 

augmented reality mobile robot based vision system.  In 

their paper they, “introduce a tele-presence vision system 

for monitoring of a network based mobile robot”, Bais et. al.  

[4]. 

    “Development and integration of generic components for 

a teachable vision-based mobile robot”,  mentioned and  

introduced by Tomohiro et. al. [5].  In their paper,  they 

presented, “a mobile robotic system for human assistance in 

navigation the robot navigates by receiving visual 

instructions from a human being and is able to replicate 

them autonomously. They describe three generic 

components defined as the HOST, the VISION, and the 

CONTROL components as well as their integration in the 

teachable mobile robot”, Tomohiro et. al. [5].   

      Furthermore, a stereo vision-based autonomous mobile 

robot was further given by Changhan et. al. [6]. In their 

research, they reported  “The proposed autonomous mobile 

robot consists of vision, decision, and moving systems. The 

vision system is based on the stereo technology, which 

needs correspondence between a set of identical points in 

the left and the right images”,  Changhan et. al. [6].  

       Stereo vision based self-localization of autonomous 

mobile robots was also introduced by Abdul et. al. [7]. They 

stated that, “The algorithm enables the robot to find its 

initial position and to verify its location during every 

movement.  The global position of the robot is estimated 

using trilateration based techniques whenever distinct 

landmark features are extracted”,   Abdul et. al.  [7]. 

     Vision-equipped apelike robot based on the remote-

brained approach was given by  Masayuki et. al. [8].  “The 

key idea of the remote-brained approach is that of 

interfacing intelligent software systems with real robot 

bodies through wireless technology.  In this framework the 

robot system can have powerful vision system in the brain 

environment. They have applied this approach toward 

formation of vision-based dynamic and intelligent behaviors 

of multi-limbed mobile robot”,   Masayuki et. al. [8]. 

 

     Intelligent robot control using omnidirectional vision 

was introduced by Manoj et. al. [9]. Omnidirectional vision 

using a wide angle lens with a (2) steradian field has been 

studied for image visualization and navigation for mobile 

robots.  “The advantages of such a technique, is that, it can 

be obtained with the large field of view include 

instantaneous viewing which permits dynamic control and 

improved visualization.  The significant geometric distortion 

can be corrected using image processing for either image 

viewing or target recognition”,   Manoj et. al. [9]. 

 

      In [10], Bai et. al. have presented a two-stage perception 

structure.  They mentioned  “The approach synthesizes the 

statistical information of projections and depth 

discontinuities in the region of interest to characterize 

obstacles. The detection-confirmation structure is robust to 

various lighting conditions, effective to negative obstacles, 

free to specular reflection effect, and real-time response to 

the interference from dynamic obstacles. Experimental 

results verified the effectiveness, reliability and real-time 

performance of the proposed approach”,  Bai et. al. [10]. 

      Hongshan et. al. [11] has reported the followings,             

“Firstly, four degrees of freedom of stereo platform with 

optimal baseline (34 cm), was designed for accomplishing 

visual tasks independently like pan, tilt and vergence of 

stereo camera. Secondly, step-motor drive scheme 

combined with closed loop servo controller was selected for 

multi-freedom controller in view of motor resolution 

requirement and system cost. Then, camera parameters 

controller was highlighted to enhance system adaptability by 

adjusting aperture, focus and zoom”.  

      Additionally, in [12] Murray and Jennings have studied 

stereo vision based mapping and mobile robot navigation. 

They reported a use of an occupancy grid mapping, as “use 

of an occupancy grid mapping and potential field path 

planning techniques to form a robust cohesive robotic 

system for robotic mapping and navigation. In these 

projects, trinocular, which is described as three camera 

stereo vision system, was used”. Researchers used some 

techniques to improve the quality of stereo vision results on 

a working system and several example implementation 

results are given in related references,  [13]. 

B.) Manuscript Contributed Works:  

 

    This paper is focusing on the issue of mapping “visual 

kinematics mappings” for a “mobile robotics system”, 
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which is visually servoed using a trainable ANN.  This is 

done for a mobile robotics system known as the “KSU-

IMR”.  KSU-IMR is mobile robot platform dedicated for 

research purposes at King Saud University.  The presented 

concept  relies on approximating the complicated nonlinear 

visual mobile robot servo kinematics.  Such kinematics are 

formulated due to mobile robot navigation, in addition to the 

inter-related kinematics of camera-mobile body Jacobian 

matrix. Here we are assuming the robot is to servo itself 

towards a scene features.  The research is also presenting 

how a trained ANN can be utilized to learn few nonlinear 

relations governing a scene drift to mobile a mobile robot 

motion.  

      The research whole concept has been based on a and use 

of three fundamentals SIMULATION ENVIRONMENTS.  

FIRST, is the mobile robot motion and target visual 

kinematics.  This done by using a MatLab Based ROBOT 

toolbox.  SECOND, is also a use of  MatLab Based Epipolar 

Geometry (two scenes geometry analysis) tools, for relating 

scenes during servoing.  THIRD, is also the MatLab Based 

ANN toolbox.  Results have indicated  that,  the proposed 

servoing methodology was able to produce a considerable 

accurate results for navigation towards a scene location via 

visual servoing.  The employed robot used for such a study, 

is known as the POWERROB mobile robotics system [1]. 

Typical KSU-IMR  robot kinematics are shown in Fig. (1). 

III.   DUAL SCENE  SEEN BY A MOBILE VISION  

(EPIPOLAR GEOMETRY ANALYSIS) 

 

     To build a closed loop visual servo system, a loop is to 

be closed around the robotics mobile system with a camera. 

For an image geometry and associated moldings, are already 

known in literature.  Fig. (3) illustrates two scenes geometry 

for two successive images of a camera representation.   For 

analyzing closed loop visual kinematics,  we shall employ a 

(Pinhole Camera Model) for capturing a scene features.   

For accurate modeling, details of a Pinhole camera model in 

terms of image plane locations  y,x
aa ,  are thus expressed 

in terms  ZYX ,  as given by Equ. (1).  In reference to 

Fig. (3), we can express image locations  y,x
aa  as 

expressed in terms  ZYX : 
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Figure 3.   Epipolar geometry.  A means for modeling and simulation a 

mobile robot-camera movements, for tracking a scene. 

 

                        


















Z

Y
y

Z

X
x

aaaa                (1) 

     Together  y,x
aa  are locations over an image plane. 

They are calculated by  in terms of 3-D locations,  i.e. the 

 ZYX , using Equ. (1).   In case of  “thin lenses”, as 

the case for a Pinhole camera model,  camera geometry are 

represented by:   (Gian  et. al. 2004), [14]: 
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     In reference to (Gian  et. al. 2004, [14]), we shall denote 

a coordinate of point  P  in frame  B .  For translation 

case, this is given by: 

                                    
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                    (3)           

(3) In Equ. (3),  OA

B  is a coordinate of the origin  OA  of  

frame  A  in a new coordinate system  B .   Rotations are 

thus expressed: 
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    In Equ. (4), iA

B  is a coordinate of  A  viewed in an 

additional coordinate B .  In case of  rigid transformation 

we have:           

                                            PRP AB

A

B

  

                                         OPRP A

BAB

A
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     For the case of more than one consecutive rigid 

transformations, i.e. form frames CBA  ,   coordinate 

of point  P  in frame  C  can then be expressed by: 

                                OOPRRP B

C

A

BAB

A

B
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     For the case   k  and   L ,  then we identify 

these parameters  v,u,, oo  as intrinsic camera 

parameters, where they present an inner camera variables.  

Rewritten in a matrix notation,  this is expressed as: 
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    Together  R  and    extrinsic camera parameters, do 

represent coordinate transformation among camera 

coordinate system and world coordinate system.  In 

particular,   v,u  point in camera image plan is evaluated 

via the following relation: 
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   At this stage,  we shall focus on the Epipolar Geometry. 

For an analysis of epipolar geometry, we need to look at two 

scenes taken from different camera postures.   In Equ. (8),  

the M matrix is the CAMERA PROJECTION MATRIX.   

In reference to Fig. (3),  we are having the case of two 

perspective views of the same scene taken from two 

separate viewpoints, as this illustrated in Fig. (3).  

Furthermore, we are assuming that both  
1

m  and  
2

m  are 

representing  two separate points for two diverse views.  

Perspective projection through 
1

  and 
2

 , of the same 

point  
w

 , for both image planes.   Assuming  
21

c,c  are 

the optical centers of two scene,  the projection 
1

  and 
2

  

of one camera center 
1

 and 
2

  onto the image plane of the 

other camera frame 
2

 (
1

 ) is the epipole geometry.  It is 

also possible to express such an epipole geometry in 

homogeneous coordinates  in terms  of  
21

~,~  : 
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     A unique of epipolar geometry parameter is the 

  33 FUNDAMENTAL MATRIX. The    matrix  

conveys furthermost of the information about the relative 

position and orientation  R,t  between the two different 

views.  The   algebraically relates corresponding points 

in two images through “Epipolar Constraints”.   For the case 

of two views of an identical point  
w

  in 3-D space. They 

are (i.e. the views) characterized their relative position and 

orientation ( R,t ) and the internal camera parameters.   The 

   is evaluated in terms of 
1

  and 
2

 , representing 

extrinsic camera parameters: 
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     The 3-D  
w

  point  is projected onto two image planes,  

to points ( m2 )  and ( m1 ).  They do constitute a conjugate 

pair.  Given a point ( m1 ) in left image plane,  its conjugate 

point in the right image is constrained to lie on the epipolar 

line of ( m1 ).  The line is considered as the projection 

through C2  of optical ray of m1 .  All epipolar lines in one 

image plane pass through an epipole point. This is the 

projection of conjugate optical center: 
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     Here  m~PPv~ 1

1
22
  is a projection operator extracting 

the  (i
th

 ) component from a vector.  
1

c  is in the focal plane 

of  right camera, right epipole is an infinity, and the epipolar 

lines form a bundle of parallel lines in the right image.  

Direction of each epipolar line is evaluated by derivative of 

parametric equations listed above with respect to  (  ): 
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(Down) 

 
Figure 4.  (Top) : The BUMBLEBEE,  8, 16, 24-bit digital data.   

 (Down):  Mobile robot PowerRob used for the experiments,  
equipped with dual camera system. 

 

IV.   A LEARNING BASED IMAGE-BASED  

MOBILE ROBOT VISUAL SERVO CONTROL 

 

    Having discussed the geometry associated with two 

different cameras views.   Within the following section,  we 

shall focus on Image-Based Visual Servo (IBVS) for a 

mobile robotic system.  Here we are assuming the mobile 

uses locations of a target features on image planes (epipolar) 

for direct visual feedback.   It is desired to keep the mobile 

body moves in such a way that camera's view changes from 

“initial” to a “final” view.  The feature vector to change 

from current features  
c

 to  
d

.  The features vector  
c

, 

comprises “coordinates of vertices”,  or “areas” of the scene 

to be tracked.   Implicit in  
d

 is the mobile normal to, and 

centered over features of a scene,  at a desired distance. 

     

     For a mobile robot system with a mounted camera, as in 

Fig. (4), viewpoint and features are functions of relative 

pose of the camera to the target,  
t

c
.  It is always found 

that, such a function is usually nonlinear and cross-coupled.  

The motion of  the robot mobile body results in compound 

movements of numerous features.  For instant,  the mobile 

rotation (with camera onboard) causes features to “translate 

horizontally and vertically” over the image plane. This 

given by  the following relationship: 
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Equ. (15) is to be linearized.   Linearrization is to be made a 

nearby an operating point: 
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In Equ. (17),   J c

f   is the features Jacobian, Gian et. al.,  

[14]. Such a matrix is  relating rate of change in mobile 

robot posture to rate of change in feature space.  For the 

case the Jacobian is “square and non-singular matrix”,  this 

results in  J c

f  to be an invertible as given by: 
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from which a controller law is expressed by: 
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will tend to servo the mobile robot body to specific desired 

feature vector.   In Equ. (19),  
p

K  matrix term the gain 

matrix, and  t  indicates a time varying quantity.  The target 

posture rates in space is  xt

c   is converted to mobile robot 

body rates.  A Jacobian,  
t

c

6

f xJ  as  derived from relative 

pose between the mobile robot and camera,  xt

c  is used for 

that purpose.  In terms of features,  both Tsai and Lenz, as in 

[15], have outlined a technique to compute the 

transformation (that involves Jacobian features), between a 

robot body and the camera frame.  In turn,  mobile speed 

rates may be converted to mobile speed rates using the robot 

Jacobian in space, as follows: 
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In Equ. (20), 
t

  does represent the mobile robot joint space 

rate (wheels speeds). Therefore, a complete closed loop 

equation thus be given by: 
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An analytical expression of an  “error function”  is given by: 
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                  (22) 

In Equ. (22),    and    is a pseudo inverse of the 

matrix   ,   )J(Z T

1

Tnm    and  J  is the 

Jacobian matrix of task function as 
















J .   In terms of 

controller robustness,  this closed-loop system is relatively 

robust. This is for the case of possible  occurrence of image 

distortions and mobile robot parameter variations (for both 

kinematics and dynamics).  In terms IBVS,  it is always 

reported that,  the significant problem is computing or 

estimating the feature Jacobian, where a variety of 

approaches have been used, Murray and Jennings, [12].  The 

proposed IBVS structure of Weiss, as was reported in M. 

Gian, et. al.  [14],  controls  mobile robot joint movements 

directly using measured image features. Non-linearities 

include “mobile robot kinematics and dynamics”, in 

addition nonlinearities due to the camera imaging system.  

Within the same context,  due to posture dependency of 

 


c1f J  , Lenz and Tsai [15] have used an adaptive control.  

However, within this study, changing relationship between 

mobile robot posture and the changes in image features will 
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be learned during the mobile motion.  This is to be done 

using a learning ANN, Fig. (6).  The ANN architecture and 

training details of the used ANN will be furthermore 

discussed within the coming section.  

 

V.   SIMULATION   

MOBILE ROBOT VISUAL SERVOING 

 

    ANN visual servoing of mobile robotic system with a 

mounted camera and image processing systems are  

simulated here. This is more depicted in Fig. (5).  During 

simulations, the task has been performed using PowerRob 

system and a camera that can provide position information 

of the target scene within the robot workplace.  The mobile 

robot direct kinematics are given by through a set of  

equations of PowerRob robotics system.  The mobile system 

are has been servoing to follow a scene of a target that is 

moving in a (3-D) space. The target scene was characterized 

by a number of features “marks”. This will also be discussed  

and shown in Fig. (8).  The target scene features will be 

mapped to the movement of scene in camera image plane 

through defined geometries.  Hereafter, changes in features 

points, and the differentional changes in mobile robot body, 

do constitute a data set used for training the ANN.  The 

ANN architecture is hence shown in Fig. (6).  
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Figure  5.   Gathering non-stationary object features. 

 

 
Figure 6.  ANN used for learning the changes in visual features. 

In this study, we have focused on the use of the “back-

propagation algorithm” as the learning technique.  Choice of 

the objective function is very important,  as the function 

represents the design goals and decides what training 

algorithm can be taken.  For this study frame work,  a few 

basic cost functions have been investigated.  Sum of squares 

error function was used as defined by Equ. (23): 

                                 









 

P

1p

N

1i

2

pipi
yt

NP

1
E      (23)                 

       An derivation of a layered network with only two 

hidden layers.  For this network there are  m   hidden units, 

and  n  output units. Output of the  thj  hidden unit is 

obtained by first forming a weighted linear combination of 

the i input values,  and adding a bias: 

                                      




 



l
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0j
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j wxwa                      (24) 

                                            
 






l

0i
i

l

0i
j xwa         (25) 

    For each output  k  unit,  first we get the linear 

combination of the output of the hidden units: 
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0kj

2

kjk
whwa                       (26) 

 finally a  k  neuron output is given by: 

                                   








 







 

m

0j

l

0i
i

l

ji

2

kj
k xwgw2gy       (27) 

 

 

 

A.) ANN TRAINING OF MOBILE MANEUVER: 

 

    The employed ANN is shown in Fig. (6).  The motivation 

is to drive the mobile robot.  This will rather be simulated 

by Matlab, and equipped with a pin-hole camera, as 

simulated with Epipolar  Geometry Toolbox.  Details of 

such  EGT, is found in Gian et. al. [14].  We need the 

mobile to servo from a starting scene toward a desired scene 

using only image data provided during the motion.   In each 

case,  the mobile was servoing with different object posture 

and a desired location in the working space. The EGT 

function to estimate the fundamental matrix   ,  given 

 
1

U  and  
2

U , for both scenes in which  
1

U  and  
2

U  are 

defined in terms of scene  3-D  Z,Y,X  feature.  Enormous 

training patterns have been gathered.  Gathered patterns at 

various mobile “drifted postures gave an inspiration to a 

feasible size of  learning ANN system. Four layers artificial 

neural system has been found a feasible architecture for that 

purpose.  The ANN maps 24 (38 feature points) inputs 

characterizing target posture feature position and mobile 

body positions into differential changes in mobile posture.  

The ANN is presented with some mobile body motion in 

various directions. Once the ANN has learned with 

presented patterns, it is arranged to be used in the visual 
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servo controller. The trained ANN was able to map 

nonlinear relations relating object movement to 

differentional changes in mobile 3-D posture. Once such 

large number of running and patterns, it was apparent that 

the learning ANN system was able to capture the stated 

nonlinear relations. 

 

B.)  Mobile Body Servoing After Training: 

 

      The execution phase begins primary while using the 

learned ANN system within the mobile robot dynamic 

controller. In refrecne to Fig. (5),  the visual servoing 

dictates a use of visual features extraction block.  That was 

achieved by the use of the epipolar toolbox.   For assessing 

proposed visual servo algorithm, simulation of  full mobile 

robot has been achieved using both (kinematics and 

dynamic) relations for the mobile robot.  Robot toolbox, 

incorporating (Mobile Robots Simulations), was also used 

for that purpose.  Results suggest high accuracy of identical 

results,  indicating that a learned ANN was able to servo the 

mobile robot towards desired posture.  Difference in error 

was recorded within a range of (410
6

)  for wheel motors 

movements.  Fig. (7) shows the two mobile robot views via 

the two stereo vsiosn system, in addition to a 2-D maps of 

the environment under study.  Fig. (8)  also shows migration 

of the specific  scene visual features,  as observed over the 

camera image plan.  As a validation of the ANN ability to 

servo the mobile towards a scene,  in Fig. (9)  we show  that 

the trained ANN visual servo controller does approach zero 

level of movement,  as for different training patterns for 

different mobile locations. 

 
 

 
Figure 7.    2-D maps of the environment under study. 

 
Figure 8.   Mobile robot is servoing towards a scene.  Here migration of 

scene visual features as seen over camera image. 

 

 

 
Figure 9.   Running the ANN with closed loop controller.   

ANN output approaching zero. 

 
 

VI.   CONCLUSIONS 
 

      This manuscript has presented details of a project  

related towards  visual servoing of  a mobile (KSU-IMR) 

robotics system at KING SAUD UNIVERSITY.  A novel 

IBVS strategy has been presented for visually servoing  

KSU-IMR mobile robot. The manuscript has also discussed 

the mechanism to learn the kinematics and feature-based 

Jacobian relations that describe the KSU-IMR robot.  The 

concept introduced has been based on the employment of an 

ANN system trained to learn the mappings relating mobile 

drifts and visual kinematics and changes happening in visual 

scene.  Changes in a loop visual Jocobain depends heavily 

on the mobile drifts from a locality, and on features 

associated with a scene under visual servo (to be tracked by 

the mobile robot).  Results have shown that, such trained a 

ANN can be used to learn the complicated visual relations 

relating robot movements to an space movement.  A key 

point is the use of multiple-view epipolar geometry during 
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the first step in order to compensate the mobile body 

rotational error and align the current view to the desired one. 
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