
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.104 e-ISSN: 2251-7545

683

A Dynamic Rule-based Approach for Self-adaptive

Map Personalisation Services

Basel Magableh
School of Computer Science and Informatics,

University College Dublin
Dublin, Ireland

basel.magableh@ucd.ie

Michela Bertolotto
School of Computer Science and Informatics,

University College Dublin
Dublin, Ireland

 michela.bertolotto@ucd.i

Abstract - With continuous increase of available geographical

information services, requirements for personalising map content

according to the user’s profile and context information are

increasingly important. Map personalisation applications could

adapt their functionality/behaviour to provide the user with specific

spatial data related to his interests at runtime. However, this can be

achieved if map applications are able to filter and prioritise

geospatial data using dynamic decision-making processes, which

considers users’ profiles and context for selecting and styling map

content according to their needs. To this aim, this article proposes a

new approach for map personalisation using dynamic rule-based

engine, which provides the map application with the ability to

change its styles and rules dynamically according to users’ profiles.

This approach differs from the majority of existing works, which

seek to embed the styling rules on the functional implementation of

the map application. In addition, the personalisation engine is

integrated with context-driven adaptation, which allows the

application to monitor, detect, analyse, and react over changes on

the computational environment and users’ profiles. This enables

map applications to use a styling rule that provides different levels

of personalisation and adapt to changes in the computational

environment including level of resources and quality of services.

Index Terms—self-adaptive map personalisation service, con-

text oriented software development, map personalisation

I. INTRODUCTION

GIS software can provide an effective mechanism for

collecting, analysing and displaying geographic information to

different individuals, including end users, geo-scientists and

decision makers [1]. The quantity of available detailed spatial

content that is displayed on a digital map leads to the

problems of information overload, lengthy map downloading

and rendering time. A reasonable approach to overcome these

problems is to provide an effective and unobtrusive

mechanism that implicitly filters and prioritises geospatial

content based on the user’s profile. Such process is called map

personalisation. Personalisation, in the context of this article,

refers to the ability of map software systems to adapt

geospatial content based on the user’s profile and interests.

Personalisation techniques have been designed using pre-

defined rules and conditional expressions for personalising

map content according to user’s profile. Unfortunately, using

pre-defined rules and conditional expressions often leads to

poor maintainability and scalability as changing these rules

when needed requires intervention of the software developers.

In addition, many personalisation techniques [1], [2], [3] have

considered a client-server model on their software architecture

design, which often faces lengthy map downloading and long

rendering time, as all personalisation is done at the server side

of the architecture [4]. Moreover, most personalisation

techniques (e.g. [5], [6], [7]) have been proposed without

considering the computational context of the environments,

which often leads to poor adaptability to the variability of

resources and services.
Map personalisation applications could adapt their

functionality/behaviour to provide the user with a specific

spatial data related to his/her interest at runtime. This

functionality needs map software to have the ability of self-

adaptability and context-awareness. Context-awareness refers

to the software ability to monitor and detect contextual

changes in the environment where they operate. In general,

context can be defined as any information that is

computationally accessible and upon which application

behaviour depend [8]. The context is classified based on its

type and whether it comes from the computational

environment or the user profile. A computational context can

be provided by a physical or logical source, i.e. available

memory, or resources, i.e. battery power level and bandwidth.

The profile includes the user’s personal in-formation and

interests based on his/her historical map usage. Self-

adaptability refers to the software ability to adjust its own

functionality or behaviour in response to contextual changes

[9]. Enabling GIS software with self-adaptability and context-

awareness can increase the level of support they provide to

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.104 e-ISSN: 2251-7545

684

end-users and their ability to adjust their functionality and

behaviour dynamically [10]. In this regard, self-adaptive map

personalisation service refers to a class of software that can

analyse and display geospatial data based on context changes

within the environment where they operate. In addition to that,

they can modify map content and display required amount of

geospatial data according to the user’s profile and interests.

Such dynamic personalisation service requires a dynamic-

decision making engine, which can propose a precise styling

rule for each specific condition.
To this aim, this article proposes the use of a dynamic rule-

based personalisation engine for customising map content.

The personalisation engine is implemented at the client side

and provides the map application with the ability to change its

styles and rules dynamically according to the users’ profiles.

The main advantage of this personalisation engine is the

ability to filter and prioritise geospatial data using dynamic

decision-making processes, which considers users’ profiles for

selecting and styling map content according to their needs. In

addition, the personalisation engine is integrated with context-

driven adaptation techniques, which allow the application to

moni-tor, detect, analyse, and react over contextual changes.

This provides map applications with the ability to adapt to

changes in the computational environment and provide

different levels of personalisation for users.
Implementing a dynamic rule-based personalisation engine

at the client side of the architecture provides the map ap-

plication with the following benefits: 1) the personalisation

engine can update the rules’ syntax based on the evolution of

the user’s profile and his/her interest without changing the

map application’s code. 2) Separating the rules’ code from the

application code requires less intervention from the software

developers and reduces the maintainability efforts. 3) Allow

the map application to offer different levels of personalisation

for different users, as it can handle a wide range of users’

profiles without encoding their rules on the map application’s

code. 4) Increase the efficiency of personalisation by sending

specific personalisation requests to the Web Mapping Service

(WMS). This allows the map application to request a specific

set of map features from the WMS that requires less

computational capacity like network bandwidth. 5)

Preforming the personalisation at the client side overcomes

the problem of information overload and lengthy map

downloading found in server-side personalisation.

The rest of the article is structured as follows. Section II

briefly sketches the technology used for achieving map

personalisation. Section III proposes the mechanism of

context-driven personalisation. Section IV illustrates a case

study implemented by Context Oriented Software

Development (COSD) methodology. The development

process and the design of self-adaptive map personalisation

services, including the self-adaptive map application and the

personalisation engine, are described in details in Section V.

Section VI focuses on evaluating the performance of the

personalisation process using the dynamic rule-based engine

against the static approach of personalising map content.

II. RELATED WORK

Typically, map personalisation systems use a client-server

model for customising map content. CoMPASS [11],

RecoMap [5] and GeminiMap [3] are examples of

applications that pro-vide map personalisation based on users’

profile. CoMPASS personalises the geospatial dataset by

adding or removing features from the map based on user’s

profiles. GeminiMap [3] personalises the visual appearance of

the spatial content by highlighting map features. These

personalisation systems implicitly profile the user’s interests

using statistical modelling techniques, which provide an

interest score for each user. Interest scores have been used

extensively in the non-spatial domain, particularly in web site

browsing as discussed by

Claypool et al. [12]. Ballatore et al. [5] proposed RecoMap as

a recommendation system for map users. RecoMap identifies

user interests by monitoring user interaction and context to

provide recommendations associated to map features. Re-

coMap uses a separated component for sensing the users’

context and profiling their interaction with map. Based on that

it assigns interest scores to spatial items by combining user’s

interactions and proximity with a specific map feature.

CoMPASS, RecoMap and GeminiMap use an implicit

profiling technique of users’ interactions with map

applications, which allows them to perform the

personalisation at the server side. However, these

personalisation techniques have not considered the

computational context of the environments, which often leads

to poor adaptability to the variability of resources and

services.
Providing dynamic and adaptive map personalisation re-

quires the service to be able to adjust, filter, or prioritise map

features based on the execution context of the user and his/her

profile. This is only achieved if the service is designed to be

dynamic and offers adaptability in conjunction with the

variability of the computational environments in which the

map application operate. In this sense, map personalisation

can be achieved using External or Internal adaptation. The

internal approach encodes the adaptation action in the

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.104 e-ISSN: 2251-7545

685

application logic. This approach is based on programming

language techniques such as conditional expressions,

parametrisation and exceptions [9], [13]. In the internal

approach, the whole set of sensors interface, context model,

user’s profile, and adaptation processes are embedded within

the application code, which often leads to poor scalability and

maintainability. A slight change in the context model requires

intensive code maintenance for the map application code.

Based on that, the personalisation techniques proposed in [5],

[6], [7] can be considered as internal personalisation

techniques that encode the map styling rules internally in the

application code, which reduces the level of personalisation

that can be offered to the users.

The external approaches use an external adaptation engine,

which provides the adaptation actions. In this approach, the

self-adaptive software system consists of an adaptation engine

and adaptable software. The external engine implements

adaptation logic, mostly with the aid of middleware [14], [15],

a policy engine [16], or other application-independent

mechanisms. This provides a dedicated software component

for performing the personalisation actions separated from the

map application. Whenever the context model is changed, the

personalisation engine can update the styling rules without

performing any changes to the original code of the map

application. To this aim, this article proposes the design of a

self-adaptive map personalisation service from a self-adaptive

map application and personalisation engine. This approach

differs from the majority of existing works, which seek to

embed the styling rules on the functional implementation of

the map application. Moreover, integrating map

personalisation with context-driven adaptation provides the

map application with several benefits in terms of adaptability

and dependability and increases their functionality to the end

users. This article presents a self-adaptive map personalisation

service developed using Context Oriented Software

Development (COSD) [17]. COSD provides a generic

development approach for building self-adaptive software

from context-oriented components. COSD implements the

principles of Model Driven Architecture (MDA) [18] and uses

an adaptive middleware technology for supporting software

with adaptability and dependability. The MDA approach

provides a mechanism for designing software systems using

an abstract model and facilitates software development by

means of code generation. The adaptive middleware software

component executes the adaptation actions and provides

dynamic composition of context-oriented components based

on the context information and user’s profile. In the following

section we discuss the concept of context-driven

personalisation, which combines the personalisation process

with dynamic context-driven adaptation.

III. CONTEXT-DRIVEN MAP PERSONALISATION

The software architecture of self-adaptive map

personalisation is shown in Figure 1. The software integrates

the map application with a Web Mapping Service (WMS)

and personalisation engine. The personalisation engine

monitors and interprets the users interactions with the map

application. The web map usage is identified by a

visualisation and analysis tool proposed in [1]. This service

produces a dataset of geospatial features associated with a

numerical weight (interest score) as calculated by the

visualisation tool. The score attribute refers to a level of user

interest on a specific spatial feature. Each feature is given

value of zero for ”no interest”, 0.2 for ”low interest” , 0.5 for

”Avg Interest” and 1 for ”high interest” on its score attribute.

This produces a set of recommended features for each user

[5]. The self-adaptive map application integrates with the

Lightweight Directory Access Protocol Service (LDAP), used

to authenticate and authorise the user to use the system and

obtain his profile data.

The profile includes personal information and interests, in

the form of a set of features with interest score. When the

personalisation engine receives the user’s profile and the set

of recommended features, it selects the best rule that suits the

user’s profile. The personalisation rule specifies a suitable

map style and recommended features and passes them to the

Self-adaptive Map Application

 Visualising and Analysis Tool
User’s profile

Lightweight Directory

Access Protocol Service

Implicit feedback of Map-based interactions

Recommended Features

Authentication/

authorisation

Personalisation Engine

Context manager

Context notification

Styling rule & Vector

layer

User context Activity context Physical context System context

Web Mapping Service (WMS)

Fig. 1. Self-adaptive Map Personalisation Software Architecture

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.104 e-ISSN: 2251-7545

686

map application. At this stage, the map application uses the

style to display the recommended features to the user.
Our map application architecture incorporates context-

driven adaptation. According to the COSD paradigm, context-

driven adaptation is achieved by designing the application

from a set of components that follows the context-oriented

component model [17]. Figure 2 shows a conceptual diagram

of context-oriented component. A context-oriented component

consists of three major parts: static and dynamic parts, and a

delegate object. The static part implements a context-

independent code fragment responsible for implementing the

map core functionality. In other words, the static part

implements any context-independent functionality, for

example the map view and user login form are context-free

functionality (i.e. context changes would not affect their

functionality). The dynamic part implements the context-

dependent functionality and participates in the context-driven

adaptation. The context-dependent functionality refers to

software functionality, which will exhibit volatile behaviour

in the face of context changes. The dynamic part consists of

multiple layers. Each component layer implements a specific

context-dependent functionality, which implements a rule to

be used for visualising specific map features. A layer is

executed only if the associated context condition is found on

the environment at runtime. For example, small display, low

memory, and low battery are contextual conditions that need

to be considered in the adaptation.

The personalisation engine invokes a specific rule in the

execution that suits only the current context condition. For ex-

ample, the personalisation service needs to reduce the amount

of geospatial data to consider low battery condition on mobile

devices. A rule is implemented inside a specific layer method.

The method is associated with the low battery condition. This

method will be executed whenever the personalisation engine

receives the notification BatteryLevelWillChange, in this case,

the personalisation engine executes the layer method, which

implements a rule that displays less amount of geospatial data

for the user (for example, displaying the features that have

interest score between ”0.7” and ”1”). This approach can

personalise the map content based on the scarcity of

computational resources.
The context-oriented component is given an opportunity to

do dynamic rule-based styling by executing different layers,

which implement different rules. Each layer must implement

two or more methods that encapsulate map rules and associate

them with context conditions. For example, the two methods

inside the layer class of the context-oriented component, could

be ContextConditionDidChange and ContextCondition-

WillChange. This allows the context-oriented component to

perform personalisation actions about a specific context

condition in active or proactive mode. Active personalisation

refers to the ability of the personalisation engine to execute a

rule when the condition is currently found in the execution

context. Proactive personalisation refers to the ability of the

personalisation engine to execute a rule that will handle a

condition that can happen after a certain amount of time. An

example of active personalisation is when the user’s location

is changed, the associated layer will execute a piece of code,

that displays the user’s location and his/her points-of-interest.

On the other hand, an example of proactive personalisation is

when the user’s mobile is capturing high speed and

acceleration. The personalisation engine can decrease the

frequency of updates from the web mapping service until the

speed of the mobile device is decreased to save allocated

resources. More frequent updates of geospatial data is a power

consuming process that needs more bandwidth and CPU

throughput, consume the allocated resources and decrease the

battery life.

The third part of the context-oriented component is the

delegate object (see Figure 2). The idea of using a delegate

object is that two components coordinate to solve a problem.

A context-oriented component is general and intended for

reuse in a wide variety of contextual situations. The base-

component is the digital map object, which stores a reference

to that context-oriented component (i.e. its delegate) and sends

messages to inform the delegate (context-oriented component)

Fig. 2. Context-Oriented Component Model

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.104 e-ISSN: 2251-7545

687

that some context condition was changed. This gives the

delegate an opportunity to de/activate a layer implementation

(i.e. method implementation) dynamically [19].

In this sense, the map application is designed from a set of

base-components (context-independent) and context-oriented

components, which construct the personalisation engine.

Whenever the map application notifies the personalisation

engine about changes on user profile or context, the

personalisation engine activates a layer implementation that

adapts to the changes by specifying a styling rule that filters

and prioritises geospatial data on the map. The following

section describes a case study used to demonstrate different

levels of personalisation and context-driven adaptations. This

case study relates to the development of a self-adaptive map

personalisation application in an eCampus environment.

IV. CASE STUDY: SELF-ADAPTIVE MAP

APPLICATION

eCampus is a self-adaptive map application, which helps

students, lecturers, staff members and visitors to explore the

campus of the National University of Ireland, Maynooth

(NUIM). In order for context-awareness capabilities to be

made available, different aspects of spatial data need to be

exploited including location, semantics, and time. The

context-aware functionality offered in this application can be

very useful to staff, students, visitors and the general public

alike when navigating and otherwise interacting within our

eCampus environment, specifically but also within any local

environment generally while at home or on-site through web-

based or smartphone connections respectively. There are two

types of users: registered and non-registered users. A

registered user includes anyone who wishes to log on (e.g.

using their student/staff ID) and a non-registered user includes

visitors to the campus (e.g. general public) who are not

required to log on. As such, both user types are presented with

different levels of functionality. The registered users profiles

are recorded so that their personal timetables and interests can

be displayed. This can be displayed with a grid/table of all

activities for the user on the current day (course, lectures

during the day/week) associated with the venue. The other

option is that the schedule is directly displayed on the

personalised map with overlay vector layer identify the

geometry coordinates of the venue and detailed information

about that activity. The recommendation of events is suited to

each user profile (ie. based on their interests). The application

selects the most relevant events to the user based on his

profile. The features on the map refer to points-of-interest

classified based on the score attribute (calculated based on the

user’s interest).

The development process and the design of eCampus

including the self-adaptive map application and a

personalisation engine are described in details in the following

section. COSD is used to develop the eCampus self-adaptive

application as shown in the following section, which

demonstrate the eCampus ability to self-adapt its behaviour

with respect to users’ profile and context, and self-configure

its functionality for styling the map content based on the

available spatial data, allocated resources and quality of GIS

services.

V. CONTEXT-ORIENTED SOFTWARE

DEVELOPMENT (COSD)

In the development of the eCampus system, we employed

COSD. COSD follows the principles of Model-Driven

Architecture (MDA). In MDA, three different models are used

during the three phases of software system design and

development: the computation-independent model (CIM), the

platform-independent model (PIM), and the platform-specific

model (PSM). The CIM focuses on both the environment and

the requirements of the system and hides the details of the

software structure and processing. The PIM focuses on the

operation of the system and hides details that are dependent on

the deployment platform. The PSM combines the CIM and

PIM, with an additional focus on the details of the use of a

specific platform by the software system [18]. COSD focuses

on partitioning the platform-independent model of the

software into two views: the structure view (i.e. the base

components) and the behaviour view (i.e. the context-oriented

components). The structure view focuses on the base-structure

of the map application and implements the context-

independent functionality. The behaviour view focuses on

modelling the context-dependent functionality of the software

on individual layers of the context-oriented component. The

design of a self-adaptive personalisation service for eCampus

involves the following three phases:
Phase 1: Computation-Independent Model (CIM): A CIM is

a model of a system that shows the system in the environment

in which it will operate, and thus, it helps the developers to

present exactly what the system is expected to do. It is useful

not only as an aid to understand the software functionality, but

also as a mechanism for predicting the exact behaviour of a

software system as a result of runtime changes. The first step

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.104 e-ISSN: 2251-7545

688

in the process is to understand the application’s execution

environment and provide a partial requirements diagram as

shown in Figure 3.

In our case study, eCampus is required to adapt its

behaviour and offer different levels of personalisation to the

users de-pending on the available resources. For example,

eCampus is required to adapt to the condition of low battery.

This can be achieved by using a location service that

consumes less power as shown in Figure 3. The “Battery

level” requirement needs a rule to manage its context changes

and display less geospatial data to suit the battery level. In

other words, the map application monitors the battery level

and the bandwidth connectivity. If the battery level is high and

healthy, eCampus uses the GPS service with more accurate

location’s update, displays more features to the user, and

animates the features’ appearance on the map when they are

recommended. If the battery level is less than a specific limit,

a WIFI-based location is used to save the battery energy and

obtain more geospatial data. Finally, if the battery level is low,

the eCampus application switches off the GPS or WIFI

location services and uses the cell-tower location services.

Using a cell-tower location reduces the accuracy of the

location but saves battery energy. In addition, the application

may reduce the number of features it displays on the map

based on different interest score levels (values).

Phase 2: Platform-independent model (PIM): The platform-

independent model focuses on the operation of a system while

hiding the details necessary for use of a particular platform. In

this phase, the requirements diagram is combined into a use-

case model. The use-cases describe the interactions between

the software system and the actor. The system-dependent and

environment-dependent behaviours are modelled as an

extension of the functional use-cases, which refers to the

structure view of the software. The functional use-cases are

modelled in a class diagram describing the application core

functions. The extended use-cases are modelled as another

class diagram that describes the application’s behavioural

model, which refers to the behavioural view of the software.

The requirements diagram in Figure 3 represents the main

inputs for this task. Each requirement is incorporated into a

use-case, and the developers identify the actor of the

requirement. An actor could be a user, system, or context

condition. The use-cases are classified into two distinct

classes, i.e., the core functionality and extended use-cases, by

the context conditions. The first step is to identify the

interaction between the actor and the software functions to

satisfy the user requirement in a context-free fashion. For

example, displaying the map view is context-independent in

the sense that the application must provide it, regardless of the

context conditions. All these use-cases are modelled

separately, using a class diagram that describes the application

core-structure or the base-component model. The class

diagram is modelled independently from the variations in the

context information.

Fig. 4. Partial Requirements Diagram

Fig. 3. Partial Requirements Diagram

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.104 e-ISSN: 2251-7545

689

 For the eCampus scenario, some classes, such as

“Displaying POIs”, “Route UI”, “MapUI”, and “User

Interface”, are classified to be on the application core (i.e. the

structure view of the software). These classes provide the core

functions for the eCampus user. Figure 4 shows the core-

structure class-model without any interaction with the context

environment. Figure 5 shows a context-oriented component

modelled to anticipate the ’location service’. The context-

oriented component implements a delegate object and sub

layers; each layer implements a specific context-dependent

function. Thersonalisation engine uses this delegate object to

redirect the execution among the sub layers, based on the

context condition and the interest score for each feature

obtained from the user’s profile. For example, the styling rule

shown in Listing 1 implements a personalisation action to

handle the low battery condition. If the battery level is high,

the personalisation engine executes

StartNavigationBasedUpdate() method which uses GPS-based

location service. At the same time, it will execute

ShowFeatures() method, which displays all features that have

an interest score between 0.3 and 1. In addition, it will

animate the map features using ShowAnimation() method, a

Phase 3: Platform-specific model (PSM): The three

diagrams modelled in the previous tasks are transformed into

Platform Specific Model (PSM). PSM focuses on the

configurations of the target platform. The specifications for

mobile devices are different from desktop platforms. At this

stage, each platform has a separated implementation of the

eCampus application. The Software developers integrate the

target platform configurations with the following models: 1)

The behavioural model, which includes the context-oriented

object diagram of eCampus 2) The core structure of the

eCampus application. 3) The context meta-model, which

includes the context model itself and the context and user’s

profile models, that describes the available context entities

and their representation on the target platform. Using a code

generation tool the final code of eCampus is ready to be

deployed on the target platform.

VI. ECAMPUS IMPLEMENTATION AND

EVALUATION

This section focuses on evaluating the performance of the

eCampus application, which was implemented using COSD

and the personalisation engine. To this aim, the eCampus

application was implemented in two different versions. The

first version was implemented using the COSD

personalisation engine. This version is called COSD-

eCampus. The second version implemented using static

styling rules embedded in the application code for performing

Fig. 5. Location context oriented component with sublayers

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.104 e-ISSN: 2251-7545

690

ENERGY
USAGE

CONTEXT
MONITORIN

G

CONTEXT
DETECTION

PERSONALI
SATION
OUTPUT

(ADAPTATI
ON)

COSD-

eCampus

eCampus

10 20 16

59 40 44

0

20.00

40.00

60.00

80.00

100.00

Context Monitoring Context Detection Personalisation output (adaptation)

4440

59

1620
10

E
n

e
r
g
y

 u
sa

g
e

COSD-eCampus eCampus

static-based personalisation. This version is called eCampus in

the experiment. For the purposes of the evaluation, both

applications COSD-eCampus and eCampus were executed on

an IPhone device [20]. During the experiment, the CPU

activity, CPU time, and energy usage were measured for

evaluating the cost of the personalisation process. These

values were measured using the energy diagnostics and

activity-monitoring tools, which analyses the CPU usage of

the running application on the IPhone device, and generates

cost and performance report. The Energy Diagnostic tool was

used to measure the battery while the device was not

connected to an external power supply; after the experiment

was finished, the data were imported from the iPhone and then

analysed using the activity-monitoring tool. The battery life

has been measured by running each version of the eCampus

application on IPhone device for 12 hours.

For example, at runtime, the context-oriented component

Location (see Figure 5) registers itself with the context

manager to be notified when the BatteryLevelDidChange,

CPULevelDidChange, MemoryLevelDidChange, DeviceOri-

entationDidChange and/or LightLevelDidChange. When the

manager posts the notification [BatteryLevelDidChange] to

the ”Location” component, the personalisation engine reads

the styling rule (see list 1.1). Based on the styling rule, the

personalisation engine calls the delegate object (Location

Manager Delegate), which forwards the method invocation to

the chosen sublayer, and it executes the ”ShowFeatures()”

method, which displays a specific subset of the map features.

For example, if the battery level is less than 20%, then the

personalisation engine activates the sublayer ”IP-based

location” and executes the method ”ShowFeatures()”, which

displays all features that have an interest score between 0.7

and 1.

The Energy usage experiment shows that the COSD-eCampus

application saves the battery consumption by 28% for the

personalisation process, despite its ability of self-adaptability and

dynamic rule-based styling, as shown in Figure 6. One of the

expected benefits of using COSD in developing the self-adaptive

application is the enhancement of the personalisation process,

context monitoring and detection processes. The eCampus

implementation using static-based personalisation consumes more

energy during the personal-isation process, thus draining the battery

faster, because a large amount of map features are rendered to the

map, which needs more CPU time, memory allocation and more

energy. On the other hand, when the COSD-eCampu s performs the

personalisation process, the application is able to personalise the map

content and enhance the amount of map features based on the context

condition. The personalisation/adaptation time and the context

handling time are shown in Figure 7. The personalisation time in

COSD-eCampus was less than eCampus implementation, because the

static-based personal-isation process needs more time to process

large volumes of map features and to render them on the map. In the

COSD-eCampus, the application selects specific features and

processes them based on the availability of resources. For this reason,

the personalisation time was reduced by 38 milliseconds in the

COSD-eCampus implementation, which improves the

personalisation process by 57%. In addition, handling the context

events was less in the COSD-eCampus as it implements a dedicated

context manager for processing the context events. In the eCampus

implementation, there was no specific manager implemented for

handling the context events, which forces the eCampus application to

process large amounts of context events and do the personalisation at

the same time.

VII. CONCLUSIONS AND FUTURE WORK

This article describes a dynamic rule-based personalisation engine

implemented at the client side of the architecture. It enables map

applications to filter and prioritise geospatial data using dynamic

decision-making processes, which consider users’ profiles and

context for selecting and styling map features according to their

needs. Using an external engine for personalising map content

provides map applications with several benefits. The personalisation

engine can update the rules’ syntax based on the evolution of the

user’s profile and his interest without changing the map application’s

code. Separating the rules’ code from the application code requires

less intervention from the software developers and reduces the

maintainability effort. The map application offers different levels of

personalisation for different users, as it can handle a wide range of

users’ profiles without encoding the rules on the map application’s

code. Sending specific personalisation requests to the Web Mapping

Service (WMS) increases the efficiency of personalisation. The map

application can request specific map features from the WMS, which

uses less resource.

6

Fig. 3. Partial Requirements Diagram

Fig. 4. eCampus core-classes structure

campus. The syntax of the ”Low battery” rule is shown in the

code of Listing 1.

If the battery level range is between 50 and 20, the per-

sonalisation engine executes StartSignificantUpdate() method,

which uses WIFI-based location service. The WIFI service

reduces the accuracy of user’s location and the frequency of

location updates. At the same time, it executes the ShowFea-

tures() method, which displays only features that have an

interest score between 0.5 and 1. In addition, it will animate

features that have interest scoregreater than 0.5 using ShowAn-

imation() method, and it will notify the users about interesting

events on NUIM campus. Finally, if the personalisation engine

faces a low battery level, it will displays map features that have

a high-interest score (between 0.7 and 1.0) with no animation

and using IP-based location service, which has less impact on

the device’s battery power level.

1 i f (B at t er y L ev el > = 50) then {
2 St ar t N av i gat i onB asedU pdat e () &

ShowFeatures (i n t er est Scor e between
0.3 and 1} & ShowA ni mati on (
i n t er est Scor e > 0. 2)

3 & di spl ayRecommendat i on (Events) }
4 el se i f (B at t er y L ev el < =50 & B at t er y L ev el

> =20)
5 then { St ar t Si gn i f i cant U pdat e () & ShowFeatures (

i n t er est Scor e > = 0.5) & ShowA ni mati on (
i n t er est Scor e > 0. 5) &
di spl ayRecommendat i on (Events) }

6 el se i f (B at t er y L ev el < 20)
7 then { St ar t St andar edU pdat e () & ShowFeatures (

i n t er est Scor e > = 0.7) } ;

Listing 1. Styling Rule

Phase 3: Platform-specific model (PSM): The three

diagrams modelled in the previous tasks are transformed

into Platform Specific Model (PSM). PSM focuses on the

configurations of the target platform. The specifications for

mobile devices are different from desktop platforms. At this

stage, each platform has a separated implementation of the

eCampus application. The Software developers integrate the

target platform configurations with the following models: 1)

The behavioural model, which includes the context-oriented

object diagram of eCampus 2) The core structure of the eCam-

pus application. 3) The context meta-model, which includes

the context model itself and the context and user’s profile

models, that describes the available context entities and their

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.104 e-ISSN: 2251-7545

691

Fig. 6 Energy usage for eCampus application

Our current prototype of the rule-based engine requires

improvement on several aspects including rules mismatch and

resolution. This is in line with providing runtime verification and

evaluation mechanism, which can verify the validity of

personalisation output among the users tasks, requirements and

needs. In addition, there is a need to measure the user’s experiences

and satisfaction after using the personalisation services, which can

improve the quality of map personalisation

for the future. These improvements form part of our future

work.

VIII. ACKNOWLEDGEMENT
Research presented in this paper was funded by a Strategic

Research Cluster grant (07/SRC/I1168) by Science Foundation

Ireland under the National Development Plan. The authors gratefully

acknowledge this support.

REFERENCES

[1] A. Tahir, G. McArdle, and M. Bertolotto, “Visualising User Interaction

History to Identify Web Map Usage Patterns,” in Proceedings of 14th

AGILE International Conference on Geographic Information Science,

Utrecht, Netherlands, April 2011, pp. 46 – 52.

[2] D. Wilson, M. Bertolotto, and J. Weakliam, “Personalizing map content
to improve task completion efficiency,” Int. J. Geogr. Inf. Sci., vol. 24,
no. 5, pp. 741–760, May 2010. [Online]. Available:
http://dx.doi.org/10.1080/13658810903074490

[3] M. Hirose, R. Hiramoto, and K. Sumiya, “Geminimap - geographical

enhanced map interface for navigation on the internet,” in Web and

Wire-less Geographical Information Systems, ser. Lecture Notes in

Computer Science, J. Ware and G. Taylor, Eds. Springer Berlin

Heidelberg, 2007, vol. 4857, pp. 279–292.
[4] G. McArdle, A. Ballatore, A. Tahir, and M. Bertolotto, “An open-source

web architecture for adaptive location based services,” In Proceedings
of the 14th International Symposium on Spatial Data Handling (SDH),
Hong Kong, vol. 38, no. 2, pp. 296–301, 2010.

[5] A. Ballatore, G. McArdle, C. Kelly, and M. Bertolotto, “RecoMap: an

interactive and adaptive map-based recommender,” Proceedings of the

2010 ACM Symposium on Applied Computing, pp. 887–891, 2010.

[6] M. Albanese, A. Picariello, C. Sansone, and L. Sansone, “Web
personalization based on static information and dynamic user behavior,”
in Proceedings of the 6th annual ACM international workshop on Web
information and data management, ser. WIDM ’04. New York, NY,
USA: ACM, 2004, pp. 80–87. [Online]. Available:
http://doi.acm.org/10.1145/1031453.1031469

[7] S. E. Middleton, N. R. Shadbolt, and D. C. De Roure, “Ontological user

profiling in recommender systems,” ACM Transaction Information
Systems, vol. 22, no. 1, pp. 54–88, Jan. 2004. [Online]. Available:
http://doi.acm.org/10.1145/963770.963773

[8] R. Hirschfeld, P. Costanza, and O. Nierstrasz, “Context-oriented pro-
gramming,” Journal of Object Technology, vol. 7, no. 3, pp. 125–151,
March 2008. P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G.
Johnson, N. Med-vidovic, A. Quilici, D. Rosenblum, and A. Wolf, “An
architecture-based approach to self-adaptive software,” Intelligent
Systems and Their Applications, vol. 14, no. 3, pp. 54–62, 1999.

[9] Z. Yu, Y. Wang, and L. Fang, “Study on the intelligent map service for
adaptive geo-visualization,” in the Proceedings of the 18th International
Conference on Geoinformatics, ser. (Geoinformatics, 2010), Beijing,
China, june 2010, pp. 1 –6.

[10] A. Emrich, A. Chapko, and D. Werth, “Context-aware recommendations

on mobile services: the m:ciudad approach,” in Proceedings of the 4th

European conference on Smart sensing and context, ser. EuroSSC’09,
Guildford, UK, 2009, pp. 107–120.

[12] M. Claypool, P. Le, M. Wased, and D. Brown, “Implicit
interest indicators,” in Proceedings of the 6th international
conference on Intelligent user interfaces, ser. IUI ’01. New
York, NY, USA: ACM, 2001, pp. 33–40. [Online]. Available:

http://doi.acm.org/10.1145/359784.359836
[13] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjorven,

“Using architecture models for runtime adaptability,” IEEE software,
vol. 23, no. 2, pp. 62–70, 2006.

[14] T. Chusho, H. Ishigure, N. Konda, and T. Iwata, “Component-based
application development on architecture of a model, ui and
components,” in Proceedings of the Seventh Asia-Pacific Software
Engineering Con-ference Conference, ser. (APSEC ’00), Singapore,
2000, pp. 349–358.

[15] A. Mukhija and M. Glinz, “The casa approach to autonomic applica-
tions,” in Proceedings of the 5th IEEE Workshop on Applications and
Services in Wireless Networks, ser. (ASWN 2005), Paris, France, June–
July 2005, pp. 173–182.

[16] R. Anthony, D. Chen, M. Pelc, M. Perssonn, and M. T. rngren,
“Context-aware adaptation in dyscas,” Electronic Communications of
the EASST, vol. 19, p. 15, 2009.

[17] B. Magableh and S. Barrett, “Context oriented software development,”
Journal of Emerging Technologies in Web Intelligence (JETWI), vol. 3,
no. 4, pp. 206–216, June 2011.

[18] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model
Driven Architecture: Practice and Promise. Boston, MA, USA:
Addison-Wesley Longman Publishing, 2003.

[19] E. Buck and D. Yacktman, Cocoa design patterns, 2nd ed. Developer’s
Library, 2010.

[20] “Ios 4.0 apple developer library,”
http://developer.apple.com/library/ios/navigation/, 2011, ”[Online;
accessed 1-April-2011]”.

CPU TIME Personalisation /
Adaptation time
(millisecond)

Context
handling
(millisecond)

COSD-

eCampus

eCampus

29 78

67 137

0

50.00

100.00

150.00

200.00

Personalisation /Adaptation time (millisecond) Context handling (millisecond)

137

67
78

29

C
P

U
 T

im
e

 (
m

il
li

se
co

n
d

)

COSD-eCampus eCampus

Fig. 7. Personalisation time (ms)

