

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

29

Agent-based Service Oriented Architecture (SOA) for

Cross-platform Communication

Najhan M.Ibrahim*
1
, Mohd Fadzil Hassan

2
, M.Hussin Abdullah

3

Department of Management and Information Technology

Kolej Universiti Islam Sultan Azlan Shah, Bukit Chandan, 33000 Bandar DiRaja Kuala

Kangsar, Perak Darul Ridzuan, Malaysia

Department of Computer and Information Sciences

Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia

Najhan@kuisas.edu.my, mfadzil_hassan@petronas.com.my, mhussin@kuisas.edu.my

Abstract. Service-oriented architecture (SOA) refers to a software paradigm to develop systems

where it is a collection of services in essence, the services of which communicate with each other.

The communication not only can engage simple data passing but also can connect two or more

services coordinating some activities. Cross-platform communication among systems is used to

describe as Information Technology in assisting and managing any work or transaction activity

without any interruption. Web services are distributed software components that support cross-

platform communication among applications over a network. Currently, there are many

specifications and deployment styles of Web services to construct SOA applications as well as

several implementation techniques and technologies. However, integration and communication

among cross-platforms cannot be guaranteed due to differences in application deployment,

versions of Web service standards and the specifications supported. Middleware has become the

accepted system to connect cross-platforms and distributed applications, and the Message

Oriented Middleware is the most difficult to ignore in integration and communication of

distributed systems. The proposed solution is a novel framework to automate the integration and

communication among different SOA-based applications based on an extension of the Message

Oriented Middleware (MOM) with Agent technology. This framework integrates agent

technology for flexibility and adaptively in the communication flow and MOM as a common

attach technology for distributed systems. Furthermore, a Translation Model is proposed to

facilitate the translation process among different Web service descriptions. The aim is to provide

a generic and autonomic translation process to support the cross-platform communication

framework. As a proof of the concept, the research work is projected on a case study of the real

world SOA application for an agent-based trading system.

Keywords: Service Oriented Architecture (SOA), Message Oriented Middleware (MOM), Agent

Technology, Web Services, Agent-based SOA, Cross-platform communication.

* Najhan Muhamad Ibrahim

Department of Management and Information Technology
Kolej Universiti Islam Sultan Azlan Shah, Bukit Chandan, 33000 Bandar DiRaja Kuala

Kangsar, Perak Darul Ridzuan, Malaysia,

Email: hanfast@gmail.com Tel:+6012-692-7200

1. Introduction
 Service-oriented architecture (SOA) is a software paradigm for integrating loosely-coupled

and distributed services into an interconnected workflow or organization process. SOA-based

mailto:mfadzil_hassan@petronas.com.my
tel:+6012-692-7200

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

30

systems may integrate both heritage and new services created by an organization, either

internally or via external trusted partners [1]. It allows an application to be connected and

executed across multiple business domains at geographically distributed locations. Within an

SOA system, services compose workflows and integrate different processes on run -time to

enable flexible connections and collaborations among business partners [2].The loose coupling

of services and reusable properties across a multi-domain makes SOA as the most flexible and

interoperable software architecture. Moreover, the integrations of the legacy system become

significant due to very fast growth of software and technology development. SOA can,

furthermore, help an organization to overcome some of the integration issues with specific

technological deployment such as by an XML file that is able to pass over different software

applications [3, 4].

Web services are distributed components that support an interoperable machine-to-machine

interaction over a network. It is a set of software that can be used in different ways to

implement an application system. In this moment of time, there are several specifications of

web services available, for example, XML (eXtensible Markup Language), SOAP (Simple

Object Access Protocol), and WSDL (Web Services Description Language); it also includes

several implementation technologies such as REST (Representational State Transfer). SOA is an

architectural style, whereas Web services are an implementation approach [5]. In addition,

SOAP is a protocol specification for exchanging structured information in the implementation

of Web Services within a computer network. It relies on Extensible Markup Language (XML)

for messaging format. Many applications have adopted SOAP to facilitate the communication

between them. In [6], how to use SOAP to integrate different applications was explored. XML

is a markup language for data structure exchanging and formatting. Web service properties such

attributes, interface and others properties are described by WSDL. A WSDL document can be

read by other client systems to learn about the service. On the other hand, REST refers to a web

service approach to implement an SOA system, it is not a standard or API. REST is also used to

build distributed applications such as Web applications. The existing standards including H TTP

and XML can be used to implement REST applications. [7-12].

Currently, web service standards and specifications are used to implement SOA and connect

it to different applications to ensure the cross-platform communication among them. Cross-

platform communication can be defined as the ability of diverse systems and organizations to

work (inter-operate) or communicate together efficiently. In the loosely coupled environment of

SOA, separate resources do not need to know the details of each work, but they need to have

enough common ground to integrate or exchange messages without any error or

misunderstanding [13]. In addition, there has been an increasing interest in the cross -platform

communication of different approaches to implement SOA and also different standards of

technology in each approach such as XML schema, SOAP, WSDL, and WS-* (WS Splat)

protocols. Various application systems or Middleware technologies are frequently used as the

communication infrastructure for a distributed system to enable the cross -platform

communication [14, 15] such as WS2JADE, P-GRID and REST based applications. Therefore,

the communication and integration between different approaches of web services to develop the

SOA application will lead to communication barriers. [16] Mentioned that different types of

web service approaches, deployment styles and even standards will also raise communication

issues. This is due to the different purposes and issues to solve in each deployment of web

services to implement SOA. Most of the adopted applications are problem specific and do not

investigate the general view of integration and communication among different domains of

SOA.

2. Background
 Middleware is a basic system to connect distributed applications because of its properties in cost and

time savings (increases productivity) [3]. Even though SOAP is the most accepted communication

mechanism for SOA applications, other communication techniques are still used such as REST, and

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

31

Messaging services [17]. However, integration cannot be assured because of various reasons such as

differences in applications and versions of Web Service standards and specifications supported in the

SOA deployment style [16]. Message Oriented Middleware (MOM) is becoming difficult to ignore in

the integration and communication of the distributed cross-platform application and is strongly

depended on in message oriented communication [18]. The authors have proposed an enhancement of

MOM to make use of an intelligent bright for information exchange in multi-domain restriction [19].

MOM is also a communication middleware that provides program-to-program connection by message

passing. It supports multiple protocols that consist of a facility to support reliable and scalable high-

performance distributed platforms. Most MOM environments are implemented with queued message

store-and-forward capability, which is Message Queuing Middleware (MQM) [19-21]. For these

reasons, the use of MOM technology to solve cross-platform issues among SOA applications is

suggested in this study.

. However, in this thesis the studies were explored and analyzed related to cross-platform integration

and communication. As a result, some the following weaknesses of Message Oriented Middleware

(MOM) were found [22-27].

 It is able to support only a small number of executions and has a limited ability to link

with complex applications.

 It is unable to trace the execution of the application and cannot rollback tasks at any level.

The MOM’s based execution models are too simple. Therefore, it cannot record any level

of execution in applications or maintain the states of those executing tasks.

 When users need to terminate tasks, MOM cannot correctly rollback all or some of the

specified tasks.

 It has a limited ability to link complex applications.

 It loses the trace of execution and is unable to rollback the task.

 It is very low level in autonomous.

 To overcome these weaknesses, some researchers have been conducted to extend Message Oriented

Middleware (MOM). Most of current the MOM extensions address only one or two of the

communication issues to solve their specific integration and communication problem. They support

only point-to-point or one-to-one communication [27] like instant messaging. In this situation, only

two participants are able to communicate at a time and both have to be in active mode. Therefore, it is

strongly argued that research in this area is needed to consolidate these distinct means of

communication for the cross-platform system to find a common ground toward the establishment of a

generic framework for cross-platform communication to be applied within the SOA context. In

addition, most of the researchers within this area are focusing more on the cross-platform specification,

standardization and requirements [28, 29]. Based on [29], there are 27 interoperate requirements to

achieve collaboration and integration. A literature survey has been and it was found that there are some

overlapping attributes and some attributes that have still not been taken into consideration. Therefore,

in the first survey matrix, the authors have proposed 16 inter-operative requirements for cross-platform

integration and communication [30]. In this comparative study, the authors have considered 8 of the

most significant communication requirements for cross-platforms. It would be difficult to implement

all of the 16 attributes in this first pilot study. This research work will focus more on generic and

autonomous level of communication among different SOA applications with multi agent technology.

Based on the mentioned limitations of MOM, such as its limited ability to link complex applications,

losing the trace of execution and its being low level autonomous, it is necessary to construct a generic,

flexible and autonomic framework for communication to support the multi-domain of a SOA system.

2.1 Scope of Study
 This research work deliberates on enabling communication among cross-platforms within an SOA

system across platforms, operating systems and programming languages. Furthermore, it proposes

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

32

integration of agent technology into Message Oriented Middleware. In particular, the authors are

concerned with Message Oriented middle for message-based communication. The authors will provide

a comparative study with related works. Moreover, an enhancement of the communication framework

is proposed and the attributes of this framework through an experimental study are also illustrated. The

search for resources and the making of a contract are not included in this work with an assumption that

both applications have been established in the connection based on the contract of an SOA system. The

complex content of the message request and response will also not be considered; this is because the

study will merely focus on the communication process between both systems.

3. Agent-based Technology
 Over the last decade, Agent technology has shown great potential for solving problems in the

large scale distributed and cross-platform systems. The reason for the growing success of Multi -

agent technology in this area is that the inherent distribution allows a natural decomposition of

the system into multiple agents that interact with each other to achieve a desired global goal

[31]. The Multi-agent technology can significantly enhance the design and analysis of problem

domains under three following conditions [32]: 1). the problem domain is geographically

distributed, 2). the sub-systems exist in a dynamic environment, and 3). the sub-systems need to

more flexibly interactive with each other. The domain of traffic and transportation systems is

well suited for an Agent-based approach because of its geographically distributed and dynamic

changing nature [33]. This study’s literature research shows that the techniques and methods

resulting from the field of Agent and Multi-agent systems have been applied to many aspects of

distributed systems and cross-platform communication, including modelling and simulation of

an Agent Platform for Reliable Asynchronous Distributed Programming [34]. Multi-agent

Systems can be considered as overviews of a new Paradigm for Distributed Systems [35] and

more exploration of this will be found in the related work section .

3.1 Agent Communication Language (ACL)
 Agent Communication Language (ACL), proposed by the Foundation for Intelligent Phys ical

Agents (FIPA), is a proposed standard language for Agent communications. Knowledge Query

and Manipulation Language (KQML) meanwhile is another proposed standard as well. The most

popular ACLs are FIPA-ACL by FIPA and KQML. Both rely on the speech act theory

developed by Searle in 1960 and enhanced by Winograd and Flores in the 1970s. They defined a

set of per-formatives (list of FIPA Communicative Act Specifications) and their meanings. The

content of the per-formatives is not standardized, but varies from system to system. To make

agents understand each other, they not only have to speak the same language, but must also

have a common ontology. Ontology is a part of the agent's knowledge base that describes what

kind of things an agent can deal with and how they are related to each other [36].

 The main idea of an ACL is to represent an appropriate framework that allows different agents

to interact and communicate with significant statements that pass on information about their

environment or knowledge. An important part of the Agent approach is the concept that agents

(like humans) can function more effectively in groups characterized by cooperation and the

division of workers [37]. Agent programs are designed to independently collaborate with each

other in order to satisfy their goal. The balance between collaboration and fulfilling its own

goals is made by each agent individually and depending on the situation.

3.2 Multi Agent Systems (MAS)
 Multi-agent systems (MAS) are the wide subject of research to study the systems developed by

multiple heterogeneous intelligent software entities, called agents. The agents in MAS are able

to participate, collaborate or simply leave. In recent years the interest in MAS has grown

greatly, and today Multi-agent technology is being used in a large range of significant industrial

application areas ranging from information management through industrial process control to

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

33

electronic commerce. All these applications have one thing in common. Agents must be able to

communicate with each other to decide what decision and action to take and how this action can

be coordinated with other actions. The language used by the agent for this exchange is the

Agent communication language (ACL). An ACL stems from the need to coordinate the action of

an agent with that of the other agents. It can be used to share information and knowledge among

agents in a distributed and cross-platform computing environment, and also to request the

performance of a task [38-40].

3.3 Agent technology for a cross-platform system

 Agent technology has an important potential to facilitate connect ivity in a distributed

and cross-platform system. The main reason for the great success of agent technology in

this area is the flexibility of the connection and integration among different applications

over a distributed environment [31]. The agent software is suitable for three

environments: the first is the distributed system, the second is for a dynamic

environment and the last is for the system that needs a flexible interaction. An

environment of distributed and cross-platform communication systems is well suited for

an agent-based system because of it is distributed in nature and dynamically flexible.

Literature studies have shown that the enhancement and practicality has been proved

from the field of agent technology as they have been deployed to solve many issues of

distributed systems and cross-platform environments [34]. For example, modeling and

simulation of the Agent Platform for Reliable Asynchronous Distributed

Programming[34], Multi-agent Systems: Overview of a New Paradigm for Distributed

Systems [35] and more exploration in the related work section.

3.4 Related Works
 In literature study, there has been an increasing amount of extension of the Agent technology for a

distributed and cross-platform system in the SOA context due to its great capability, facility, flexibility

and support for the multi-protocols of the Multi-agent system (MAS). These works have been carrying

on from different approaches. In the proposed framework for this present, Multi-agent are responsible

for managing the communication and translating the message that are out-going and in-coming to

enable the communication across platforms, operating systems and programming languages.

Nonetheless, no extension has been applied for cross-platforms in the scope of this thesis; the state-of-

the-art research on this area has been studied to decide which cross-platform specification is most

suitable to implement the suggested communication framework. In this section, some of the cross-

platform communication techniques with Agent technology suggested by other researchers in different

prospective are presented.

 Identifying the quality attributes related to cross-platform communication is the best step to develop

the framework. One of the important works related to enhancement of Agent technology for a

distributed system is an Agent platform for reliable asynchronous distributed communication.

Bellissard L. et al. [34] introduced a distributed communication model based on autonomous agents’

software. Agents behave as the attached software components and provide an atomic execution from

node to node. They are also the dynamic objects which can run in parallel and have their own state in

each communication. They act regarding to an event and reaction model. An event is a typed data

structure or method used to exchange information with other agents.

 In another similar work, A. Lin and P. Maheshwari [33] proposed to construct an Agent-based

middleware (AbM) for Web Service dynamic integration on Peer-to-Peer networks to facilitate the

integration of optimal quality of Web Services for application integration. AbM will dynamically and

autonomously accomplish the goal on behalf of a user by employing the best quality of Web Services

that are purely distributed. With AbM, system developers can save costly time by asking agents to

collect as many Web Services as they need and understand their usages. In addition, Web Services

provide a function that may be large and frequently changes, but in a composition pattern they are to

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

34

achieve a business process goal. Web Service dynamic integration (WSDI) is the concept of replacing

Web Services with other better quality Web Services in integration prototypes at run time to maximize

the quality of the performance in a business process.

 In a recent study by Xiang Li [41], it was mentioned that to integrate process operation systems

effectively, an Agent-XML based information integration platform is proposed. The subsystems are

encapsulated as agents based on XML and Agent technology. Based on the integration concept, the

agents deployed in different domains of the system are integrated. Since the encapsulation of different

sub-systems has been implemented by Agent software, the security and stability are guaranteed in this

integration platform. This is also to ensure the good cross-platform communication between different

agents which is handled by XML. Figure 1 elaborates on the information integration platform of the

Agent-based XML. In addition, Xiang Li has identified four basic requirements for this integration

platform: (1) the integration should support communication among different modules, (2) the

integration should be dynamic, (3) the security and stability should be assured from former systems,

and (4) the integration is to extend the function, and not neglect the function of the sub-system.

Furthermore, Xiang Li proposed three basic functions as shown in Figure below; namely (1) data

integration and system cooperation, (2) the data analysis and decision support and (3) User interaction.

Figure 1. The Agent-XML-based information integration platform [41]

 Cervera et al. [42] implemented a different framework for cross-platforms that supports the

implementation of control tasks based on software agents and streaming technologies. This

implementation consists of free, off-the-shelf, software components, resulting in a transparent system

in which the configuration can be adapted to existing hardware in very different ways without any

modification in the source code. On the other hand [43] and [44] proposed Multi-agent systems for

translation among heterogeneous service description languages and Multi-agent frameworks for a

Multi-agent-oriented office network. Both frameworks aim to enhance communication within their

own specific domain.

 In another similar work, H. Farooq Ahmad [35] proposed a communication framework for cross-

platforms by exploring the basic Agent system’s architecture with highlights on Agent communication

languages (ACL). The two most accepted Agent communication languages, namely FIPA-ACL and

KQML, have briefly been reviewed. This work has proposed a communication framework that

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

35

provides a dynamic connection between FIPA agents and WSMO (Web Service Modeling Ontology)

based semantic Web Services. FIPA is a standard organization for the development of Agent-based

technology and defines a range of architectures for Multi-agent systems in order for FIPA agents to

integrate with Web Services. Each element of FIPA-MAS must be SOA compliant. On the other hand,

WSMO is a language for the semantic markup of grid services and provides a semantic layer over grid

resources. In addition, FIPA and WSMO differ in terms of sentence structure, semantics and

implementation, which prevent the communication between agents and grid services as shown in

Figure 2 [36]. This integration aims to develop SOA compliant FIPA-ACL ontology by merely

considering one specific communication issue but not considering a general communication

requirement for cross-platforms that needs to develop a generic framework from quality attributes for

communication across platforms, operating systems and programming languages.

Figure 2. Architectural Realization of the SOA Compliant FIPA ACL [36]

 Purvis M. et al. [31] described a framework for building distributed information systems from

available resources based on software agents and distributed technologies. They enhanced and adopted

an Agent-based architecture by message exchanging via the FIPA Agent communication language

(ACL). The architecture was also implemented to grant and open an Agent-based environment for the

integration of distributed sources of information over the network.

4. Agent-based Message Oriented Middleware
 According to the literature study, most of the current discussions in cross -platform and

distributed systems are on middleware technology as an interoperate application because of its

properties in cost and time savings (reduce complexity and increase productivity). Even though

web services over SOAP are the most accepted communication mechanism for SOA, other

communication techniques are used, such as REST and messaging services [5]. Nevertheless, an

organisation cannot truly take advantage of an application’s benefits without a well -integrated

and communicate within a cross-platform and distributed software infrastructure. Middleware

enables this integration by sending approaching applications out to cross -platform environments

and releasing the domain-specific value of each application [17, 45].

 To overcome the weaknesses of multi-domain communication, some researchers have

conducted studies to extend the MOM architecture. Most of these efforts have addressed one or

two issues of the MOM limitations and have not considered the general requirement for cross -

platform communication [1]. Therefore, it is strongly argued that a study in this area is needed

to consolidate these distinct issues of cross-platform integration and communication to find a

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

36

common ground towards the establishment of a generic framework for cross-platform

communication to be applied within the SOA context. Development of a generic and flexible

framework, architectures, tools and platforms to support different applications among cross -

platforms and geographically distributed systems would be a good step towards achieving cross -

platform communication in SOA systems. The suggested framework is a multi -agent system

(MAS) where agents manage all the communication processes among applications. At the same

time, there will be a translation agent involved in this process. The general view for the

framework is shown in the figure below.

 In Figure 3, the cross-platform framework includes four Multi-Agents System (MAS) in each side of

application to be used in the communication process between different SOA applications. Included is

the Agent Sender, Agent Receiver, Agent Manager and Agent Translator; these multi agent systems

represent communication enabled for different SOA applications which use different types of messages

in their system communication. At the left side of the diagram is a representation of the SOA-based

application 1 and the right side has a representation as the SOA-based application N.

Figure 3. Suggested Frameworks (General view)

 In addition, both sides have an agent sender and agent receiver to manage incoming and outgoing

messages from each application system. These agents use a message queue to store the sequence of

transactions in order to assist both applications even though the partner is in the inactive mode. When

one of the systems sends or receives a message, it will put the message into the message queue and the

agent will manage the message as to whether the message can be sent to the next process or has to wait

for a previous message to complete the process. Those messages will be sent to the agent manager

which will analyse each message in terms of failure recovery, guaranteed transmission and scalability.

Afterward, the manager will pass the message to the agent translator; the agent has its own

specification to translate and mapping the message from the Directory Facility (DF) of the JADE

platform where the library files for each Web service message are able to be altered [46, 47]. There are

Agent Sender Agent Receiver

Agent Manager

Agent Translator

Web service

SOA

Application -1

Agent Sender Agent Receiver

Agent Manager

Agent Translator

Web service

SOA

Application –N…

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

37

two important tasks for the Agent translator; they are to translate the incoming and outgoing messages.

The incoming message is an ACL message from the agent manager which needs to be translated into a

WSDL message in order to redescribe it back into their own Web service message; such an outgoing

message will be a WSDL message that has been described to the Web service message for its SOA

application. The WSDL message needs to be translated into ACL in order to enable the agent to carry

and manage the message to the partner’s SOA application. The following will describe the WorkFlow

management system for the Agent-based MOM.

4.1 Agent-based MOM Workflow management system (AMWMS)
 In general, users are able to describe the interactions among agents by using the agent

communication language (ACL) which is the basic standard agent communication proposed by FIPA

(Foundation for intelligent Physical Agent) [39]. The workflow system can coordinate and control the

interactions among agents which are used to perform tasks, such as message passing and executing

tasks. The proposed approach for workflow management in SOA environments is an Agent-based

MOM WorkFlow Management System (AMWMS). AMWMS provides high-level and flexible

interoperation to enable transparent communication among agents over cross-platforms and distributed

systems over a wide-area network.

 The basic idea for the AMWMS is to simplify and facilitate the complex environment of cross-

platform communication; it consists of a collection of federated servers with a hosting AMWMS

conceptual engine in each of the Agent-based MOMs. The partnership of the processing resources

which host the AMWMS environment, make their own placement and communication decisions

independent of each other. The AMWMS environment provides the necessary framework for the

seamless communication and execution of the component parts of the users' requests across the cross-

platform system to ensure that the request is fulfilled. The AMWMS architecture has been adopted

from a service-oriented perspective with a high degree of automation that supports flexible

collaborations and computations on a large complex application as shown in Figure 4. Workflow

engines are distributed across an SOA-based application. In this work, the cMOM [48] (Composite-

event Based Message-Oriented Middleware) was adopted as the AMWMS engine. The communication

and message passing can manage themselves where an AMWMS engine can be interconnected with

those SOA services and resources in the engine. AMWMS engines can be dynamically detected and

connected into different SOA architectures, such as XML-based applications, SOAP-based

applications and CORBA-based applications. Due to the dynamic nature and flexibility of agent-based

technology, the AMWMS conceptual engine is suitable for cross-platform communication.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

38

Figure 4. Agent-based MOM Workflow management system (AMWMS)

 In addition, this communication workflow decreases the level of complexity in cross-platform

communication. In an Agent-based MOM workflow, all components will have two way interactions

and the platform will use the standard messaging proposed by FIPA which is ACL (Agent

Communication Language), each agent will manage each message priority based on its rules and

analyse the action that should be taken. For example, a SOAP-based need to send a message to a

CORBA-based application where the manager agent of the Agent-based MOM that is attached with a

SOAP-based application will analyse the message that needs to be sent and the agent sender will send

the message to receiving agent of the agent-based MOM that is attached with the CORBA-based

application. The translator agent in each side will manage the translation process from WSDL to ACL

and vice versa [20].

4.2 Agent-based MOM Multi Agent System (ABMMAS)
 In the previous section, the proposed framework was presented in an overall view. In this section, the

components of the multi-agent systems in the Agent-based MOM framework will be explained in

detail. ABMMAS is used as a plug and play system among the different applications in an SOA system

to enable communication. Each application of the SOA system needs to be attached with ABMMAS;

this includes all incoming/outgoing messages to/from partner application systems. In general, it will

translate a WSDL message (web services) from an SOA application to an ACL message. Afterwards, it

will analyse the message content of both the incoming and outgoing in the SOA application. Therefore,

it can respond with the right action that has been requested. For instance, a SOAP-based application

has requested to send a message to a REST-based application; ABMMAS will analyse the request and

send the message to ABMMAS of the REST-based application, dynamically. ABMMAS consists of

four agents which are the Sender, Receiver, Translator and Manager Agents. The following sub

sections will present the roles and functionalities of each agent by AUML [49].

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

39

 4.2.1 Sender

 The sender agent is responsible for sending the ACL message to the agent receiver of the partner

Agent-based MOM system. It is able to store incoming messages in case the agent receiver is in the

inactive mode. It also collects the basic information directly from the agent manager from the original

message of the agent translator that has been translated from the Web service format. The basic

information in the Web service is identified as communication directives. The basic information could

include sender, receiver, reply to, message content, language, encoding, basic ontology mapping and

many others depending on how it is defined in the Web service. The collected information will be

stored in a message queue which manages the messages for the next process.

Sender

Description:

 This role is sending the outgoing ACL message from the agent manager to the agent receiver of

the partner and saving it at the same time in the history.

Protocols and Activities:

 GetACL, StoreMessageQueue, SendACL, ActiveDropDelay

Permissions:

 Send ACLMessage

 Store Message

 Active Message Drop / Delay

Responsibilities:

 Liveness:

 Sender = (GetACL. StoreMessageQueue, SendACL)

 ActiveDropDelay = (GetDropDelay, StoreMessage, SendACL)

Safety:

 MessageQueue ≠ NULL

 ACLMessage TRUE

Figure 5. Role Schema for Sender Agent

 As shown in Figure 5, this agent is allowed to receive the ACL messages, store them in the message

queue, and send the message. The agent is initiated by receiving the ACL message to generate the

destination of the receiver and then send the ACL message which is expressed with the following

formula:

 Sender = (GetACL. StoreMessageQueue. SendACLMessage)

 The following is the simple code of JADE to send a message to another agent. The agent needs to

understand the message as to where it needs to send the message and what the message content is.

Afterwards, it will fill the fields of an ACLMessage object and then call the send () method of the

agent class. The code below sends the inform message to an agent, whose nickname is application1,

that the product price is 100USD [39].

ACLMessage msg = new ACLMessage(ACLMessage.INFORM);

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

40

msg.addReceiver(new AID(“Application1”, AID.ISLOCALNAME));

msg.setLanguage(“English”);

msg.setOntology(“Product-price-ontology”);

msg.setContent(“The price is 100USD”);

send(msg);

 4.2.2 Receiver

 The main task for the receiver agent is to receive the message from the agent sender of the partner

application. The message will be stored in the message queue before being executed to the next

process. The agent sender of the partner application is the only agent able to send the message to this

agent. The message queue functionality of this agent is the same as the sender agent. In case the partner

system is not available the message can be affected by delays and being dropped so the agent will

return the message to the queue which will enable the reprocessing of the message for the next

transmission.

Receiver

Description:

 This agent receives the message from the sender of the participant application. It needs to

forward the message to the agent manager so that it can analyse the message.

Protocols and Activities:

 ReceiveACL, StoreMessageQueue, ForwardACL, ActiveDropDelay

Permissions:

 Store Message

 Forward ACLMessage

 Active Message Drop / Delay

Responsibilities:

Liveness:

 Receiver = (ReceiveACL, StoreMessage, ForwardACL, ActiveDropDelay)

Safety:

 Message ≠ NULL

 ACLMessage TRUE

Figure 6. Role Schema for Receiver Agent

 Figure 6 shows the role schema of the agent receiver based on the AUML modelling. It shows that

the receiver would use four protocols to interact with the other agents. These protocols are (initially)

ReceiveACL, StoreMessage, ForwardACL and ActiveDropDelay. Additionally, this agent cannot be

initiated unless the message is valid and the rules have been extracted as shown in the Safety section.

Furthermore, the agent sender at runtime automatically posts messages in the receiver’s private

message queue. An agent can pick up messages from its message queue by means of the receive()

method. This method returns the first message in the message queue (removes it) or null (does nothing)

if the message queue is empty and immediately returns [50].

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

41

ACLMessage msg = receive();

if (msg != null) {

// Process the message
 4.2.3 Manager

 The manager agent initiates the process by analysing the message that has been received from both

agents which are the translator and receiver agents in different communication procedures. It is to

ensure the three main responsibilities of this agent which are Failure Recovery, Guaranteed

transmission and Scalability. The manager agent sends the notification when it detects an execution

that violates the message content. It will then send the response report to the owner agent of the

message. This response consists of three things: the message block that has been violated, the

execution that violated the transmission, and the action that should be applied based on the owner of

the message. When the manager agent sends the report, it expects that the partner will send a response

back to cancel the transmission or resend the violated message again. This is to achieve the three main

responsibilities noted above. After the verification process, the management agent will receive the

response from the owner of the original message about their decision and it will forward the message to

the next agent to process and will save it in the transmission status log file. Therefore, the management

agent is the agent to counter some serious communication violations; this is like a manger role in an

organization. The functionality of the management agent can be extended to be involved in any

Negotiation or Service level agreement (SLA) process which is out of the scope of this study [33, 37,

51].

Manager

Description:

 The manager agent receives the message from two directions: (1) from the agent receiver that

received the message from the agent sender of the partner application and (2) from the agent

translator that needs to forward the message to the partner application. The agent manager will

manage the message for some purposes, such as guaranteeing message transmission, scalability

and failure recovery.

Protocols and Activities:

 Initialise, GetMessage, AnalyseMessage, SaveMessage, ForwardMessage

Permissions:

 Reads Message Content

 Saves Record

Responsibilities:

 Liveness:

 Manager = (GetMessage, AnalyseMessage, ForwardMessage)

 SaveMessage = Analyse, SaveMessage

Safety:

 Message ≠ NULL

 Manage Complete

Figure 7. Role Schema for Manager Agent

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

42

 In addition, Figure 7 shows the role schema of the Manager Agent based on the AUML modelling.

It shows that the manager would use four protocols to interact with the other agents. These protocols

are (initially) GetMessage, AnalyseMessage, SaveMessage and ForwardMessage. This agent also

cannot be initiated unless the message is valid and the rules have been extracted as shown in the Safety

section.

 4.2.4 Translator

 The message mapping definitions obtained from the WSIG (Web Service Integration Gateway) will

be used by the translator agent to evaluate and match the message content for the translation process

based on the mapping library. The translator has the role to translate the message from WSDL to ACL

and vice versa. The message from the attached SOA application that has been described by the

standard Web service format which is the WSDL (Web Service Description Language) will be

translated into the ACL (Agent Communication Language). Therefore, ACL is the standard agent

communication language proposed by FIPA that will be the generic language in the proposed

communication method. This is to support the different types of SOA applications that may be

included in the future where there is a standard communication language and standard Web service

description. Furthermore, the ACL message from the agent manager will be translated into WSDL for

matching with its own Web service format. In the case study-based implementation, the authors

evaluated only three different types of messages which were REST, SOAP and CORBA. For other

types of messages will be included in a future study [33, 38, 46]

Translator

Description:

 The translator agent gets the messages from two sides, from the agent manager and from the

attached SOA application. Then, it checks the content of each message and responds to the

message request.

Protocols & Activities:

 GetMessage, ReadMessage, Analyse, TranslateMessage, ForwardMessage

Permissions:

 Reads ACL, Request

 Translates ACL, WSDL

Responsibilities:

 Liveness:

 Translator = (GetMessage. ReadMessage. AnalyseContent. ForwardMessage)

 TranslateMessage = (GetMessage. Analyse. Translate)

Safety:

 Message ≠ NULL

 Translation Complete

Figure 8. Role Schema for Translator Agent

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

43

 The role schema of this agent is shown in Figure 8. It states that this agent executes two processes

which are analysing the messages and translating the messages which is explained in the Liveness

section as the following: In the next section, an implementation and validation of the proposed

framework will be presented in detail.

 Translator= GetMessage.ReadMessage.AnalyseContent.ForwardMessage)

 TranslateMessage = (GetMessage. Analyse. Translate)

5. Implementation and Validation
 Web services have been accepted for enabling cross-platform communication among different SOA

applications. Additionally, Agent technology can be described as autonomous, adaptive and intelligent

software. It is a computer program which responds to the communication act. Therefore, interaction

among applications is carried out automatically without any control from the user in certain periods of

execution. There are valid significant needs of agent technology to access and translate a Web service.

As a result, integration of Web services and software agents provide several advantages in enabling the

communication within a cross-platform environment. In general, an agent will access a Web service to

read the content and convert it into the agent supported format. Consequently, with the independent

and adaptive attributes of agent software, it will support multi-domain communication[52, 53].

In addition, Web service is a piece of software that makes a service available through

distributed applications. The objective is to develop a web service where the components can be

used and reused by other applications. Currently, many research works have extended Web

technology to support cross-platform applications. Some have adopted agent-based technology

to facilitate the communication process. Therefore, integration among Web services and agent

software is challenging [54]. In this thesis, an extension of the Message Oriented Middleware

with Agent technology for the cross-platform environment of an SOA system has been

proposed. Generally, an SOA-based application uses the Web service for their communication.

However, most of the existing solutions of integration look at only a single dimension. For

example, WS2JADE aims to convert SOAP messages into Java messages (ACL) and vice versa

but is not able to convert others type of Web service messages [46]. Thus, this proposed

framework also consists of an Agent translation model that automatically translates the Web

service into a supported message of the partner application. It also supports multiple types of

Web services which are based on the DF library file in the JADE Platform. In the next section

the Implementation Hardware and Software Setup will be presented [55, 56].

5.1 Implementation Hardware and Software Setup
 The case study used in all the experiments is composed of three communication experiments for

different SOA-based applications. Each application is connected with the Agent-based MOM

(ABMOM) to facilitate the communication among those that are SOAP-based applications, CORBA-

based applications and REST-based applications. Those SOA-based applications represent the different

partners of the SOA-based applications that are required to communicate with each other. In addition,

each of SOA-based applications can be represented as Buyers or Seller in the case study to evaluate

cross-platform communication. However, due to limitation of prototype, only one SOA-based

application can be represented as seller at a time. The ABMOM was installed into every systems of the

SOA application as a plug and play application. Then, some task was allocated to each SOA-based

application to communicate with each other. The original task was from the SOA-based application

that was attached with ABMOM. The request was in the Web Service format that would be described

by WSDL. Afterwards, the Multi agent system of ABMOM executed a task based on each role of the

agent.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

44

Figure 9. Simulation Metric

 As shown in Figure 9, ABMOM resides in the SOAP-based application, CORBA-based application,

and REST-based application. All applications run the HTTP server, JADE environment and Apache

Server. Three important elements are present in the FIPA compliant platform. The Agent Management

System (AMS) controls the access of the platform and the Directory Facility (DF). DF provides a

library service and Agent Communication Channel (ACC) that facilitates the message transport service

for FIPA ACL message delivery among agents living in different agent platforms [47, 57]. In the case

study, there are two different platforms to evaluate the communication performance of ABMOM. The

platform details are presented in Tables 1 and 2.

Table 1. Platform number I

Model Dell Inspiron Desktops

Processor CORE i3 @ 2.66GHz

Total memory 4.GB

Operating system Window 7 Professional

OS version OA SEA

Java Sun SDK 1.5

JADE 3.7

Table 2. Platform number II

Model BenQ Joybook S31v (Notebook)

Processor Intel® Core™2 CPU T5500 @ 1.66GHz

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

45

Total memory 3.GB

Operating system Window XP

OS version SP2

Java Sun SDK 1.5

JADE 3.7

5.2 Prototype Implementation of Agent-based MOM
 During this section, a detailed discussion is presented regarding the prototype implementation of the

Agent-based MOM for cross-platform communication among different SOA-based applications.

5.2.1 Tools and Technologies Used

 Following is a brief description of the tools and technologies used in the implementation process.

5.2.1.1 NetBeans IDE 6.5 RC2

 The NetBeans IDE is an Integrated Development Environment available for Windows, Mac, Linux,

and Solaris. In the java community, two particular client platforms play a fundamental role, namely the

NetBeans Platform and the Eclipse Client Platform. “NetBeans IDE allows a user to easily reload the

Java Model in an instance of a running program” [58]. The NetBeans project consists of an Open

Source IDE and an application platform which enable developers to rapidly develop Web, enterprise,

desktop, and mobile applications using the Java platform, as well as PHP, JavaScript and Ajax, Ruby

and Ruby on Rails, Groovy, and C/C++. It is supported by a vibrant development community and

offers a diverse selection of third-party plug-ins as shown in Figure 10. In this work, multiple Web

services have been integrated with the agent software in NetBeans IDE which includes several third-

party plug-ins, i.e., Web Service Integration Gateway (WSIG).

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

46

Figure 10. NetBeans Platform

5.2.1.2 Java Agent Development Environment (JADE)

 As shown in Chapter 3, each component in the proposed framework is represented as a Multi Agent

System (MAS). The JADE Platform was used that facilitates the development of the multi-agents

systems. The JADE version that was used is JADE 3.7, JADE includes two main attributes which are a

FIPA-compliant agent platform and a package to develop Java agents. It is made of numerous Java

packages which provide application programmers with both ready-made pieces of functionality and

abstract interfaces for custom applications [50]. JADE is also completely implemented in the Java

language and the average system requirement is version 1.5 of the JAVA run time environment which

is a free download from Sun Corporation [57]. Each agent executes several different behaviours as

defined in the agents' specification. The path of each agent execution developed in JADE is shown in

Figure 11.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

47

Figure 11. Agent Execution Path [50]

 In addition, there are five states of an agent after it has been created which are active, waiting,

suspended, transited and killed. Each agent has its own thread, thus all of the agents independently

execute their behaviours in parallel. JADE architecture enables agent communication through message

exchange based on the FIPA specifications of the agent communication language (ACL). Agents in the

JADE environment can work collectively to achieve common objectives by coordination towards a

better process. Thus, JADE simplifies the implementation of multi-agent systems. Every machine in

the proposed prototype has its own JADE agent container built on its Java Virtual Machine (JVM) in

order to manage the agents for specific behavioural mechanisms. The JVM provides a complete run

time environment for agent execution and allows agents to be executed on the same host, concurrently.

Every JADE agent container will register itself to the Remote Method Invocation which allows agents

from different machines to communicate with each other [50, 57].

5.2.1.3 Web Service Integration Gateway (WSIG)

 Web Service Integration Gateway is an add-on component that supports the invocation of a JADE

agent and provides an integration facility for the Web service and the Agent software. WSIG is used to

expose services provided by agents and published in the JADE DF library as Web services and vice

versa, with no or minimal additional effort. It provides developers with flexibility and autonomy to

meet specific requirements. The process involves the generation of suitable WSDL for each Web

service description and is registered with the DF, then it possibly publishes the exposed service in a

UDDI register. It also enables the translation of the Agent Communication Language (ACL) into

WSDL and vice versa [59].

5.2.1.3.1 WSIG Architecture

 WSIG supports the integration of the Web service and agent software which consist of WSDL to

describe Web services in a standard format. It supports SOAP/HTTP messages for transmission and

UDDI repository for publishing Web services using tModels. A tModel is a data structure representing

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

48

a service type (a generic representation of a registered service) in the UDDI (Universal Description,

Discovery, and Integration) registry. As shown in Figure 12 WSIG is represented as a web component

including two main attributes, WSIG Servlet and WSIG Agent. The WSIG Servlet is an interface

towards other applications and is responsible for incoming Web service requests and extracting the

message. It prepares the corresponding agent action and passed it to the WSIG agent for preparing the

response to the client. On the other hand, the WSIG agent can be described as the gateway between the

Web and agent software. It is responsible for forwarding agent actions that are received from the WSIG

Servlet and subscribing to the JADE DF to receive notifications. This is for the agent registration and

deregistration that created the WSDL corresponding to each agent service registered with DF and

published the service in a UDDI registry [46, 47, 59].

Figure 12. WSIG Architecture[59]

5.2.1.4 Web service Ontology (OWL-S)

 OWL-S is a Web service ontology which contributes a core set of markup language constructs for

describing the attributes and capabilities of their Web services in an unambiguous and computer-

interpretable form. The OWL-S markup of Web services will facilitate the automation of Web service

tasks, including automated Web service discovery, execution, composition and interoperation.

Currently, the Web Service Description Language is rapidly growing to provide a foundation for

interoperation among Web services. Therefore, OWL-S is developing to provide integration among

them and the agent technology. It is the flexible automation of service provision and provides

significant methodologies [60]. In addition, OWL-S is an ontology of the OWL-based framework in

the Semantic Web, for describing Semantic Web Services. “It will enable users and software agents to

automatically translate, discover, invoke, compose, and monitor Web resources offering services,

under specified constraints” [61].

5.2.1.5 Universal Description, Discovery and Integration (UDDI)

 UDDI is a platform independent framework for describing services which is an XML-based registry

where agents publish their WSDL documents. It is a public Web service registry standard hosted in a

third party entity for service description and discovery. It is also an open industry initiative for

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

49

discovering businesses, and integrating business services by using the Internet. Furthermore, UDDI is

sponsored by the Organization for the Advancement of Structured Information Standards (OASIS)

which is a global USA consortium for maintaining Web service standards. UDDI was originally

proposed as a core Web service standard. It stores Web service business information in three forms:

white, yellow and green pages. White pages hold Web services general information like name, address

and description. Yellow pages allocate different business classifications according to the type of Web

service or geographical location. Green pages contain service technical capability information that

consumers use to invoke the Web service [62, 63].

5.2.1.6 AUML Development Diagram

 The Agent Unified Modelling Language (AUML) is an agent software paradigm which is extended

from the Unified Modeling Language (UML) proposed as a standard by the Foundation for Intelligent

Physical Agents (FIPA). AUML is a well-established and trusted method. It is “a widely accepted

methodology for designing software systems according to the object-oriented paradigm” [64]. AUML

also “crystallizes a growing concern for agent-based modelling representations and lets designers move

smoothly from software development to agent development”[65]. AUML used to enable agent oriented

programming (AOP) for the efficiency of implementation. Currently, AUML has become significantly

important for object oriented programming that has encouraged researchers to enhance it to support

agent-based programming.

Figure 13. AUML Sequence Diagram for the Agent-based MOM

 In Figure 13, the AUML Sequence diagram for the Agent-based MOM is illustrated in detail. The

sequence diagram starts with SOA application-1 sending the Web service to the agent translator that

has been described by WSDL and then translates it into ACL and forwards it to the agent manager.

After that, the message will be forwarded to the agent sender so that the message can be sent to the

agent receiver of the SOA application-N. Afterwards, the ACL message will be forwarded to the agent

manager and agent translator to translate back the ACL message into the supported Web service format

of SOA application-N. In addition, SOA application-N represents different applications of the SOA

system which could be supported by different types of Web service technologies in the future.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

50

6. Evaluation and Validation
 The scenarios of SOA cross-platform communication are investigated and found that the significant

cross-platform attributes are not included during the early stage of development of SOA applications

because of two main reasons. Firstly, there is no clear identification of the generic attributes for the

cross-platform communication in SOA systems. Secondly, the current existing cross-platform

frameworks are problem specific of which the main goal of communication and integration is to

resolve their specific problem.

 There should be a formal means through which a generic cross-platform framework would be

modelled and developed within the SOA environment. Having this very essential in mind The “Agent-

based MOM” has been developed. The attributes for cross-platform communication have been

identified and among them the most essential cross-platform attributes were picked which were

necessary for constructing the proposed framework. An easyABMS was defined illustrating the cross-

platform attributes and the attribute mechanisms through which these cross-platforms attributes would

be realized. Afterwards, the AUML modelling technique was used for the definition of these cross-

platform attributes as an activities diagram in AUML.

 The domain experts in each area of the system development, who are experts only in their particular

cross-platform problem, will only model and develop the framework to resolve their specific issues.

Thus, there should be a comprehensive consolidated research study to develop a generic cross-platform

communication framework for different SOA applications.

6.1 Comparison of “Agent-based MOM” With Related Work

 Keeping in mind the guidelines discussed by Chituc, C.-M., A.R. Azevedo, and S. Toscano [29], the

significant attributes for a cross-platform and distributed system have been defined. The comparision

table represents the related work regarding the cross-platform communication in an SOA application.

Out of the sixteen most significant attributes for a cross-platform, a generalization has been made of

some overlapped attributes to include in this proposed framework. Table 3 presented research work

which is very close to this proposed framework and illustrated the details in the discussion which is

provided below.

1. Standardization and Autonomy: A cross-platform communication framework should be

generic and autonomic, it should not be meant for only a particular application domain.

Standardization means generic and accepted by multiple domains to overcome the issues

whereas autonomic means the level of flexibility to execute the task.

WS2JADE, the IEEE FIPA Approach to Integrating Software Agents and Web services, and the SOA

Compliant FIPA ACL are [33, 36, 38, 46] presented as an integration and communication among the

different Web service applications. The frameworks constructed under their works concentrate only to

integrate and enable the communication between the SOAP Web service protocol and the software

agent which are not considered in different types of Web service technologies. An Agent Platform for

Reliable Asynchronous Distributed applications [34] and An Agent XML based Information

Integration Platform [41] also use the same approach to resolve only their specific problem. Yoe Jin

Yoon et al. [43] have extended the Communication System among Heterogeneous Multi-Agent

Systems which does also not include the requirement attributes for a generic and standard cross-

platform framework.

 As compared to some other works, the proposed Agent-based MOM for cross-platform

communication is more generic and flexible which enables it to support multiple application domains.

Its main goal is not to resolve a particular integration and communication concern instead it looks at

the general requirements of the cross-platform to develop the framework.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

51

2. Communication type and Message type: The cross-platform communication framework will

be flexible in communication and use a standard messaging system. The flexibility of the

communication refers to communication that proceeds without any response from a partner

and is able to communicate even though the partner application is in the inactive mode. The

standard message type can be described as the message that has been accepted by a

recognized organization. Therefore, the cross-platform communication should not adapt only

some specific technique or technology to decipher a particular problem.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

52

Table 3. Comparison of the proposed work by different Researchers

 No

Works

Comparison of the proposed work by different Researchers

 Communication

type

Availability Autonomic

level

Message

type

Software

failure

recovery

Guaranteed

transmission

Scalability

Standardization

1 An Agent Platf

orm for Reliabl

e Asynchronou

s Distributed [3

4]

Asynchronous

Active /

Non-active

mode

No

ACL

Yes

No

No

No

2 Agent-Based

Middleware for

 Web Service

Dynamic [33]

Synchronous

Active

mode

No

WSDL

No

No

Yes

No

3

WS2JADE [46

]

Asynchronous

Active /

Non-active

mode

Yes

SOAP/

ACL

No

Yes

No

Yes

4 IEEE FIPA Ap

proach to Integ

rating Software

 Agents and W

eb Services

[38]

Asynchronous

Active /

Non-active

mode

No

SOAP /

 ACL

Yes

No

No

Yes

5 An Agent XM

L based Inform

ation Integratio

n Platform

[41]

Synchronous

Active

Mode

No

SOAP

No

No

No

No

6 A Cross-Platfo

rm Agent-base

d Implementati

on [42]

Synchronous

Active

mode

No

ACL

Yes

No

Yes

No

7 Communicatio

n System amon

g Heterogeneo

us Multi -Agen

t Systems [43]

Synchronous

Active

mode

No

ACL

No

Yes

Yes

Yes

8 Multi-agent Sy

stem for Distri

buted environ

ments [35]

Synchronous

Active

 mode

No

ACL /

KQML

No

Yes

Yes

No

9 SOA Complian

t FIPA Agent

Communicatio

n Language

[36]

Asynchronous

Active /

Non-active

mode

Yes

SOAP/

ACL

No

No

Yes

Yes

10 An Agent-Base

d Distributed

Information

System

Architecture

 [31]

Synchronous

Active

mode

No

ACL

No

No

No

No

11

Proposed

Agent-based M

OM

Asynchronous

Active /

Non-active

mode

Yes

WSDL/

ACL/

SOAP

Yes

Yes

Yes

Yes

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

53

The framework constructed under Agent-Based Middleware presented by Aizhong Lin and Piyush

Maheshwari [33] used the synchronous type of communication where every sent message requires a

response from a partner application before proceeding to the next message. Xiangyu Li [41], Enric

Cervera [42], and Bo Chen et al. [32] also used the same approach in their work for a communication

system. Martin Purvis et al. [31] have extended the Agent-Based Distributed Information System

Architecture for cross-platform communication; however, the constructed framework also used the

synchronous type of communication.

 As compared to some other works, this proposed cross-platform communication framework has

adapted the requirement attributes for a generic and flexible communication which uses the

Asynchronous type of communication and supports multi-domains.

 Table 3 Comparison of Agent-based MOM with Related Works Based on Cross-platforms

3. Availability and Scalability: SOA applications are basically a distributed application that

requires the availability and scalability of both partner applications. Only sending and

receiving methods of applications are not guaranteed of a successful communication.

Availability and Scalability are significantly important for cross-platform communication

where different applications may have different system environments and requirements that

require them to communicate and execute the tasks. Therefore, it is essential for the system to

communicate any time whether the partner is in the active or inactive mode. WS2JADE and

the IEEE FIPA Approach to Integrating Software Agents and Web Services [38, 46] have

been used in some of the previously proposed frameworks with a flexibility of

communication; however, they still lack the scalability that is required for the system to

handle a growing number of tasks. In the rest of the previously proposed frameworks, the

significance of availability and scalability were not considered for their systems which are the

basic requirement attributes for cross-platform communication.

 In this proposed framework, eight requirement cross-platform attributes were identified which are

essential to develop a cross-platform communication framework for different SOA-based applications.

4. Failure recovery and Guaranteed transmission: A cross-platform communication framework

is a generic and flexible system which should consist of essential attributes when constructed.

System recovery and the guarantee of transmission are also significant attributes for cross-

platform over a large area of a network. Hence, the system will be able to recover from any

communication failure and ensure the message transmission among systems.

 In most of the previously proposed frameworks, there is a lack of consideration to include software

failure recovery and guaranteed transmission for their works [31, 33, 34, 41]. Therefore, they are

unable to roll back the transmission for a recovery and provide a successful communication system. As

a result, in this proposed framework, these attributes have been considered as essential mechanisms to

construct the framework.

7. Conclusion
 In this research, an Agent-based Message Oriented Middleware has been suggested to ensure the

communication among different SOA-based applications. In order to validate and evaluate the system

performance and its effectiveness, a system experiential test had to be executed. The experiential test

was challenging based on a lot of extended solutions being invented in the cross-platform with

different particular perspectives. Most of the research works in literature were proposed to solve some

particular issue which would fix their specific problem. Therefore, three dimension case study

implementation was conducted to prove how generic and flexible the proposed cross-platform

communication framework. In the proposed solution, the concentration was on generic and autonomic

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

54

cross-platform communication which would be able to communicate among more than two different

SOA-based applications.

 In addition, according to the literature review, it was shown that there are no exact similar studies

within the same scope of cross-platform communication in an SOA system which conducted a

comparative study. Therefore, it was necessary to take other similar studies from different domains of

research, such as Grid Interoperability Solution[66], Interoperability between Heterogeneous Multi-

Agent Systems[44], A Cross-Platform Agent-based Implementation[42] and so on. The approach to

evaluate the proposed framework would be to have different SOA-based applications that need to

communicate with each other and then the framework would be applied in that environment. However,

such an approach is out of the scope for this research work that involves heavy and complex message

content. In the experiential testing, the framework was implemented with the implementation of the

case study presented. Currently, we are working to include more difference message types into the

framework which will support more different types of SOA application for cross-platform

communication.

References
1. KANCHANAVIPU, K., An Integrated Model for SOA Governance, in Applied Information

Technology. 2008, IT University of Göteborg Chalmers University of Technology and

University of Gothenburg: Göteborg.

2. Hentrich, C. and U. Zdun, A Pattern Language for Process Execution and Integration Design

in Service-Oriented Architectures, in TPLOP I. 2009, Springer: Verlag Berlin Heidelberg. p.

136 – 191.

3. Papazoglou, M.P., et al., Service-Oriented Computing:State of the Art and Research

Challenges. 2007, IEEE.

4. TEO, L.K.Y., D.W. TEH, and B. CORBITT, SERVICE ORIENTED ARCHITECTURE

(SOA): IMPLICATIONS FOR AUSTRALIAN UNIVERSITY INFORMATION SYSTEMS

CURRICULUM. 2006, IEEE.

5. Srinivasan, L. and J. Treadwell, An Overview of Service-oriented Architecture, Web Services

and Grid Computing. 2005.

6. Louridas, P., SOAP and Web Services, in the IEEE Computer Societ. 2006, IEEE.

7. Laitkorpi, M., J. Koskinen, and a.T. Syst¨, A UML-based Approach for Abstracting

Application Interfaces to REST-like Services, in Working Conference on Reverse

Engineering. 2006, IEEE.

8. Dodero, J.M. and E. Ghiglione, ReST-Based Web Access to Learning Design Services, in

TRANSACTIONS ON LEARNING TECHNOLOGIES. 2008, IEEE.

9. Feng, X., J. Shen, and Y. Fan, REST：An Alternative to RPC for Web Services Architecture,

in First International Conference on Future Information Networks. 2009, IEEE.

10. Gang, Y., A Research on Semantic Geospatial Web Service Based REST, in International

Forum on Computer Science-Technology and Applications. 2009, IEEE.

11. Song, Y., K. Xu, and K. Liu, Research on Web Instant Messaging Using REST Web Service.

2010, IEEE.

12. Glover, A., ed. Build a RESTful Web service. 2008, IBM.

13. Yanga, Q.Z. and Y. Zhangb, Semantic interoperability in building design: Methods and tools.

Computer-Aided Design, 2006. 38.

14. Hughes, A., Middleware for managing a large, heterogeneous programmable network. BT

Technology Journal, 2002. Vol 20 No 4.

15. Chan, L., S. Karunasekera, and A. Harwood, Middleware for Complex Service-Oriented Peer-

to-Peer Applications, in MW4SOC ’07. 2007, ACM: Newport Beach, CA, USA.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

55

16. Kuppuraju, S., A. Kumar, and G.P. Kumari, Case Study to Verify the Interoperability of a

Service Oriented Architecture Stack, in International Conference on Services Computing.

2007, IEEE: India.

17. Issarny, V., M. Caporuscio, and N. Georgantas, A Perspective on the Future of Middleware-

based Software Engineering, in Future of Software Engineering. 2007, IEEE.

18. Happe, J., H. Friedrich, and S. Becker, A Pattern-Based Performance Completion for

Message-Oriented Middleware, in WOSP’08. 2008, ACM: Princeton, New Jersey, USA.

19. Ahn, S. and K. Chong, A Case Study on Message-Oriented Middleware for Heterogeneous

Sensor Networks, in IFIP International Federation for Information Processing. 2006, IFIP. p.

945 – 955,.

20. Banavar, G., et al., A Case for Message Oriented Middleware, in Verlag Berlin Heidelberg,

Springer, Editor. 1999, Springer: Berlin p. 1–17.

21. Goel, S., H. Shada, and D. Taniar, Asynchronous Messaging Using Message-Oriented-

Middleware, in IDEAL 2003. 2003, Springer: Verlag Berlin Heidelberg. p. 1118-1122.

22. Yang, H., et al., Message-Oriented Middleware with QoS Awareness, in ICSOC-ServiceWave

2009. 2009, Springer: Verlag Berlin Heidelberg. p. 331–345.

23. Sachs, K., S. Kounev, and S. Appel, Benchmarking of Message-Oriented Middleware, in

DEBS’09. 2009, ACM: Nashville, TN, USA.

24. Xu, Y.-z., D.-x. Liu, and F. Huang, Design and Implementation of a Workflow-Based

Message-Oriented Middleware, in APWeb Workshops. 2006, Springer: Verlag Berlin

Heidelberg. p. 842 – 845.

25. Maheshwari, P., T.N. Kien, and A. Erradi, QoS-Based Message-Oriented Middleware for

Web Services, in WISE 2004 Workshops, LNCS 3307. 2004, Springer: Verlag Berlin

Heidelberg. p. 241–251.

26. Taton, C., et al., Self-optimization of Clustered Message-Oriented Middleware, in OTM 2007,

LNCS 4803. 2007, Springer: Verlag Berlin Heidelberg. p. 540–557.

27. Wang, J. and J. Bigham, Anomaly Detection in the Case of Message Oriented Middleware, in

MidSec'08. 2008, ACM: Leuven, Belgium.

28. Elmroth, E., F. Hernández, and J. Tordsson, Three fundamental dimensions of scientific

workflow interoperability: Model of computation, language, and execution environment.

Future Generation Computer Systems, 2009.

29. Chituc, C.-M., A.r. Azevedo, and S. Toscano, A framework proposal for seamless

interoperability in a collaborative networked environment. Computers in Industry, 2009: p.

22.

30. M.Ibrahim, N.b. and M.F.b. Hassan, A Survey on Different Interoperability frameworks of

SOA Systems Towards Seamless Interoperability, in ITsim '10. 2010, IEEE: Kuala Lumpur,

KLCC.

31. Purvis, M., et al., an Agent-Based Distributed Information Systems Architecture, in

Proceedings of the 33rd Hawaii International Conference on System Sciences. 2000, IEEE.

32. Chen, B., H.H. Cheng, and J. Palen, Integrating mobile agent technology with multi-agent

systems for distributed traffic detection and management systems. Transportation Research

Part C, 2009. 17 p. 1–10.

33. Lin, A. and P. Maheshwari, Agent-Based Middleware for Web Service Dynamic Integration

on Peer-to-Peer Networks, in AI 2005, LNAI 3809. 2005, Springer: Verlag Berlin Heidelberg.

p. 405 – 414.

34. Bellissard, L., et al., An Agent Platform for Reliable Asynchronous Distributed Programming.

1999, IEEE: FRANCE.

35. Ahmad, H.F., Multi-agent Systems: Overview of a New Paradigm for Distributed Systems, in

HASE’02. 2002, IEEE.

36. Raja, M.A.N., H.F. Ahmad, and H. Suguri, SOA Compliant FIPA Agent Communication

Language. 2008, IEEE.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

56

37. Poggi, A., M. Tomaiuolo, and P. Turci, An Agent-Based Service Oriented Architecture. 2007,

IEEE.

38. Greenwood, D., et al., The IEEE FIPA Approach to Integrating Software Agents and Web

Services, in 2007 IFAAMAS. 2007: USA.

39. Feng, Q. and G. Lu, FIPA-ACL Based Agent Communications in Plant Automation. 2003,

IEEE.

40. CHUSHO, T. and K. FUJIWARA, A Form-based Agent Communication Language for

Enduser-Initiative Agent-Based Application Development. 2000, IEEE.

41. Li, X., An Agent/XML based Information Integration Platform for Process Industry, in 2010

2nd International Conference on Computer Engineering and Technology. 2010, IEEE.

42. Cervera, E., A Cross-Platform Agent-based Implementation. 2005, IEEE.

43. Yoon, Y.J., K.H. Choi, and D.R. Shin, Design and Implementation of Communication System

among Heterogeneous Multi-Agent System, in Fourth International Conference on Networked

Computing and Advanced Information Management. 2008, IEEE.

44. Suguri, H., et al., Assuring Interoperability between Heterogeneous Multi-Agent Systems with

a Gateway Agent, in Proceedings of the 7th IEEE International Symposium on High

Assurance Systems Engineering (HASE’02). 2002, IEEE

45. Brown, J.A., Middleware Interoperability in SOA Applications. 2004.

46. Nguyen, X.T. and R. Kowalczyk, WS2JADE: Integrating Web Service with Jade Agents, in

Verlag Berlin Heidelberg 2007. 2007, Springer: Berlin.

47. E.Cortese, F.Quarta, and G.Vitaglione, Scalability and Performance of JADE Message

Transport System. 2002.

48. Yuan, P. and H. Jin, A Composite-Event-Based Message-Oriented Middleware, in GCC 2003,

LNCS 3032. 2004, Springer: Verlag Berlin Heidelberg. p. 700–707.

49. Bakar, M. and S. Ghoul, A Methodology for AUML Role Modeling, in Fourth International

Symposium on Innovation in Information & Communication Technology. 2011, IEEE.

50. Caire, G., JADE PROGRAMMING FOR BEGINNERS. 2009.

51. Mata, A., et al., MACSDE: Multi-Agent Contingency Response System for Dynamic

Environments. 2009, Springer: Verlag Berlin Heidelberg. p. 50-59.

52. S.Muthaiyah and L.Kerschberg, Dynamic Integration and Semantic Security Policy Ontology

Mapping for Semantic Web Services (SWS). 2006, IEEE: USA.

53. Chester, T.M., Cross-Platform Integration with XML and SOAP, in IT Pro September ,

October 2001. 2001 IEEE.

54. Pullena, J.M., et al., Using Web services to integrate heterogeneous simulations in a grid

environment. Future Generation Computer Systems 21, 2009: p. 9.

55. a, D.C., G.D. b, and F.o. Vernadat, Architectures for enterprise integration and

interoperability: Past, present and future. Computers in Industry, 2008. 59: p. 12.

56. Ying-pei, W. and S. Ting-ting, Research on Information System Integration in Colleges Based

on SOA. International Conference on Advances in Engineering, 2011. 24(Procedia

Engineering): p. 345 – 349.

57. Nikraz, M., G. Caire, and P.A. Bahri, A Methodology for the Analysis and Design of Multi-

Agent Systems using JADE. International Journal of Computer Systems Science &

Engineering special 2006(Software Engineering for Multi-Agent Systems).

58. Gregersen, A.R. and B.N.r. J0rgensen, Module Reload through Dynamic Update - The Case

of NetBeans. 2008, IEEE.

59. Board, J., JADE WSIG Add-On GUIDE. 2008.

60. Martin, D., M. Paolucci, and S. McIlraith, Bringing Semantics to Web Services: The OWL-S

Approach, in SWSWPC. 2005, Springer: Berlin.

61. Saadati, S. and G. Denker, An OWL-S Editor Tutorial, S. International, Editor. 2005: Menlo

Park, CA.

62. Mintchev, A. and S.L. Bulgaria, Interoperability among Service Registry Implementations: Is

UDDI Standard Enough, in International Conference on Web Services. 2008, IEEE

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.11, 2013

Published online: Nov 25, 2013

DOI: 10.7321/jscse.v3.n11.4

57

63. Maamar, Z., H. Yahyaoui, and Q.H. Mahmoud, Messengers for the Dynamic Management of

Distributed UDDI Registries. 2004, IEEE.

64. Bergamaschi, S., et al., Experiencing AUML for the WINK Multi-Agent System. 2007: Italy.

65. Huhns, M.N., Agent UML Notation for Multiagent System Design, in INTERNET

COMPUTING. 2004, IEEE.

66. Kertész, A. and P. Kacsuk, Grid Interoperability Solutions in Grid Resource Management.

IEEE SYSTEMS JOURNAL, 2009. 3.

