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Abstract.  It is important to drive robotics systems with heavy duty machines.  However, analysis and 

controller  synthesis of an electrical rotating  machine  is considered as hard task to be achieved.  This 

is due to the complicated and nonlinear differntional equations that govern such types of electro-

mechanical systems. This article has been conducted to solve the issue of designing linear controllers 

(even with some Robust 


H  characters) for a class of nonlinear electrical motor. Initially a Takagi –

Sugeno (T-S) Neuro-Fuzzy models are built while extracting machine sub-linear models.  Local state 

feedback controllers are synthesized using some optimization tools.  For designing the controller with 

some  noise rejection characters,  an 


H  was used, while  solving LYAPUNOV candidate function 

using LMI formulation. The synthesized controller strategy has proven as an effective in terms of 

solving for optimal system algebraic Riccatti formulation, while relying on Neuro-Fuzzy sub models.  
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1. Introduction 
1.1.  Robotics drives, electric machine modelling and control 

     Nonlinear 


H  control schemes have been initiated to deal with robust performance design 

requirements systems with nonlinear behaviors, [1].  For the case of conventional optimal controller 

design, a plant model must be known.  For such a case, it is needed to evaluate the well-known 

Hamilton-Jacobi equation, (a class of nonlinear partial differential equation, [2]).  The well-known 

standard nonlinear 


H  control design,  are in fact,  not appropriate for practical control system design. 

Hence, control engineers do refer to a simple fuzzy control design with guaranteed control 

performance. To stabilize nonlinear systems, fuzzy controllers have introduced. This helps to eliminate 

effects of external disturbances below a prescribed levels. By doing so, desired 


H  control 

performance is guaranteed, Chen [3].  Due to simplicity in design, merely linear fuzzy control is used, 

without complicated feedback linearization or parameter update law, though, 


H  performance is 

achieved with minimized attenuation level.  The introduced method is an attempt to combine the merits 

of  linear fuzzy model and 


H  performance to obtain a simple but practical algorithm. The approach is 

considered a bridge among two significant design techniques.  This is the robust and fuzzy control 

paradigm.  Accordingly the technique is to grant  the additional 


H  design with intelligence and fuzzy 

technique with better performance respectively, [4],[5], and [6].  In addition, the technique of linear 

matrix inequality (LMI), has also emerged as vigorous tool through solving the known Algebraic 

Riccatti Equation.  For instance,  Li et. al. [6],  showed the relation between LMIs and AREs through 

absolute stability criteria, robustness analysis and optimal control. An analysis for robust stability of a 
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fuzzy control system via quadratic stabilization, 


H  control theory can in fact be solved by LMI 

techniques. Neuro-fuzzy architectures have the ability to even model small inherent dynamics in 

electrical machines. Hence, they do bridge gaps between AI related modeling techniques, and 

controllers synthesis.   Such a charterers  are  not easily available within other modeling methods. 

 

 

 

 

 

 

 

 

 

I f

V f

Ia

LfVa

Rf

La

Ra

Ea

 

Medium Small Large 

y 

x 

x 

 

  

 
                                     (a)                                                                                   (b) 

 

Figure 1.  Bridging the gap between machine engineering and soft computing techniques. 

(a)  Machine equivalent circuit.  Machine interrelation dynamics are highly nonlinear. 

(b)  Takagi –Sugeno linear fuzzy models,  seen as a smoothed piece-wise linear approximation. 
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Figure 2.  Learning machine dynamics with a five layers Neuro-Fuzzy architecture. 

 

 

1.2.  Research objective 

     The approach presented here is an attempt to combine linear fuzzy models and the 


H   

performance to obtain an algorithm for a robust control of a nonlinear electrical machine (ac motor). 

For the machine details, this is illustrated in fig. 1.  The figure shows the corresponding schematic 

diagram of the adopted totally nonlinear electrical machine, with the associated dynamic parameters.  

Hence, the approach is to incorporate the obtained linear (T-S) fuzzy models (via a five layers Neuro-

fuzzy architecture), to design an 


H  characterized controller system. The used Neuro-fuzzy 

architecture is shown in fig. 2.  The approach is bridging the gap between computationally AI related 

modeling techniques and others advanced controller synthesis.  The presented nonlinear electrical 

machines are highly nonlinear dynamic systems due to magnetization, therefore it was made easy to 

model it with multiple linear models,  as achieved via  the adopted Neuro-fuzzy architecture.  

 

1.3.  Manuscript organization 
    This article has been organized into six main sections.  Section (1) presents a brief introduction to 

the subject and related challenges.  In section (2), we  present machine dynamics and the basis of  

fuzzy (T-S) models. It also present the details of a five layers Neuro-Fuzzy architecture. Section (3) 

discusses 


H  design for fuzzy linear models. Section (4) presents the problem formulation of a closed 

loop Lyapunov based 


H  controller synthesis. In section (5) we experiment and show a case study for 

the proposed  controller synthesis.  Finally section (6) draws few points of conclusion. 

 

2. Machine dynamics and model description 
2.1.  Nonlinear machine dynamics  
     The machine interrelation parameters dynamics are considered nonlinear.  In reference fig. 1, the 

detailed system parameters are presented here. Numerical parametric details of the machine will be 
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discussed in section (5).  For notations, (
a

i ) is the machine armature current, (
f

i ) is the machine field 

current, (
load

T ) is machine load torque, (
e

T ) is the electromagnetic torque. 
f

  is the field winding flux 

linkages,  
r

  rotor speed in rad/s.  
a

E  is the machine back emf.  Furthermore, for the machine state 

equations, the armature winding loop equation: 

                                                            
ffm
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In  eq. (1) and for separately excited machines, the non-linear magnetizing characteristic is given by: 
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Furthermore in eq. (1),  the inverse magnetizing characteristic is expressed as: 
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and the field winding loop equation: 
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Expressing nonlinear equation of the machine shaft motion by: 

                                                                         
loadafm

r Tik
dt

d
J 










                                                      (3) 

     In general context,  machine dynamics are represented by a linear state-space: 

 

Linear model:                                                   tttt wBuAxx                  

Nonlinear state model:                                     tttgtft wuxxx                                  (4) 

 

     The machine states, (input) and (unknown) disturbances are thus defined by: 

Machine state            t
n21

tx...txtxt x  1 n     

machine input            t
n21

tu...tutut u  1 m      

machine disturbance                                 t
n21

tw...twtwt w
1 n                                              (5)  

 

     It is assumed that,  the machine is subjected to disturbances,  tw .  Disturbances are acting at output 

rotating shaft with an upper bound  tww
ub
 .  

2.2.  Building T-S linear models out of nonlinear motor models 

      In reference to fig. 2.,  building fuzzy models for dynamic systems, have been suggested by Takagi 

and Sugeno (T-S), as in Massoud and Yazdanpanah [7].  T-S model statement is used to represent local 

linear input-output relations.  Once the machine is represented  by a (T-S)  model, it is described by if-

then fuzzy rules.  The  i
th

  (T-S) fuzzy  rule of  is stated as: 

 

Rule i:   if  (z1(t)  is  Mi1 … and  zg(t)  is  Mig)    (i = 1,2,…,r)   then   (        ttttx
ii

wuBxA  ) 

Machine output: 

Rule i:     if  (z1(t)   is Mi1 … and  zg(t) is Mig)      (i= 1,2,…,r)    then       tt
i
xCy                              (6)   
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where,                                                        T
n21

tz,...,tz,tzt z
1n                                               (7) 

                                                                   no

i

mn

i

nn

i
,,   CBA                                               (8) 

 

(r)  in  eq. (6)  is the number of if-then rules,  Mig is fuzzy membership associated with  i
th

  rule and  g
th

   

parameter component. There are two functions of  tz  with each rule.  The first  is a degree of 

fulfillment  i
th

  rule as: 

                                                                         


g

1j
jiji

tzMtz                                               (9) 

 

    In eq. (9),   tzM
jij

 is grade of membership of  tz
j

.  The possibility that  i
th

  rule fires,  is given by 

product of all membership functions associated with  i
th

  rule.   All 
i

  are  non-negative functions  and  

truth value of at least one rule is nonzero.  A firing probability for an  i
th 

 rule is defined by: 
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In eq. (9),  it is assumed that: 

                                                                0t
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for all  t.   Therefore, we get, 
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Using the center of gravity for defuzzification,  output  of  a  T-S fuzzy system is finally expressed: 
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 Fuzzy linear state models are hence given by eq. (15) and eq. (16).  

 

2.3.  Fuzzy (T-s) machine models and stability condition 

      It is needed to evaluate control gains 
j

K  for  the machine fuzzy controller, while  guaranteeing 

closed-loop stability.  Once    0t u ,  machine fuzzy open loop description  of  eq. (15)  is restated as 

follows: 
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     Linear consequent equations represented by  t
i
xA  is a sub-system.  Sub-systems are asymptotically 

stable if there exists a common positive definite matrix P :  
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                                                                     0
i

T

i
 PAPA                                                            (18) 

 

     Eq. (18) depends on motor sub-models, i.e.  
i

A  it does not depend on the disturbance  tw .  This is 

reduced to a Lyapunov stability definition for linear systems if   1r  .  Finding a common Lyapunov 

function P  for eq. (18) can be solved by convex programming algorithm. This involves using   LMI’s.   

From eq. (2) and eq. (15),  the approximation error between the nonlinear machine eq. (2) and the 

fuzzy model  eq. (15) is expressed: 

 

                                                                            tttgtft wuxxx   

                  


r

1i
iii

tttht uBxAzx                  ttthgtthf
r

1i
ii

r

1i
ii

wuBzxxAzx 













 





 



              (19) 
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2.4.  Machine fuzzy controller law 
     A  state feedback  fuzzy controller of    tt

i
xKu   is employed to deal with the control system 

design.   In terms of fuzzy rules,  this is given by: 

 

j
th

 Control Rule: 

                                 Rule j:    if z1(t) is Mj1 … and  zg(t) is Mjg   then    tt
i
xKu                                 (21) 

 

 

    For  ( j =1,2,…,r ),  the overall fuzzy controller is defined by: 
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  th
j

z  was defined by eq. (10)  and 
j

K  are the control parameters for  j  from  (1  r). 

 

 

2.5.  Closed loop of fuzzy modeled machine system 
    To acquire entire closed loop machine dynamics,  eq. (23) is substituted into eq. (19).   This yields:  
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     In eq. 24,  f and g  are errors  between fuzzy model and the actual machine model.  They are 

expressed as: 

                                                                         




 



r

1i
ii

tthff xAzx                                                   (25) 

                                                                      tgththg
r

1i

r

1j
jiji
xKBxzz  

 

                                          (26) 

 

 

3. A fuzzy based  controller synthesis with an H  character 

      Disturbance rejection is an important character while designing controllers.  We  shall assume that 

 tw  is an unknown but bounded disturbance. The effect of  tw , does deteriorate the control 

performance of fuzzy control.  Therefore, how to eliminate the effect of  tw to guarantee the control 

performance is the controller objective. Since 


H  control is the most important control design to 

efficiently eliminate the effect of  tw , it will be employed to deal with the robust performance 

control.   Considering the following  


H  control performance: 
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xQx
                                             (27) 

      Or even it can expressed as:               dtttdttt ft

0

T2ft

0

T

 wwxQx                                (28) 

        

     In eq. (28),  ft  denotes the terminal time of the control,   is a prescribed value which denotes the 

worst effect of   tw  on   tx , and Q  is a positive-definite weighting matrix.  A physical  meaning of 

eq. (28)  is that,  effect of the disturbance  tw  must be attenuated below a desired level   from 

energy  point of view.  A desired level of   is chosen as a positive small value less than unity for 

attenuation of  tw .  Inequality given by eq. (27) can be seen as bounded disturbance and bounded 

state but with a prescribed gain  .   If the initial condition is also considered,  the inequality eq. (35) is 

modified as : 

                                                           dttt00dttt
ft

0

T2Tft

0

T

  wwxPxxQx                            (29) 

     

     In eq. (29),  P  is some symmetric positive-definite weighting function. The design purpose of a 

fuzzy control system is to specify a linear fuzzy controller such that both the stability of fuzzy linear 

control and the 


H   control performance in eq. (28) with a prescribed attenuation level   are 

guaranteed.  The robustness optimization is to achieve a minimum 2  in eq. (28) to obtain maximum 

elimination of the effect of the disturbance  tw .  For the nonlinear motor system eq. (2), this design 

problem is reduced to identify a stabilizable fuzzy control K  as will be discussed in the coming 

section.  

 

3.1.   


H   control design, (Lyapunov approach) 
     The design purpose is to specify a fuzzy linear control law given in eq. (23) for the nonlinear system 

in eq. (24) with a guaranteed 


H  performance in eq. (28).  Since the system in eq. (24) is nonlinear 

system, then we shall be choosing a LYAPUNOV function of : 

 

                                                                            tttV T
xPx                                             (30) 
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The weighting matrix P  is,  0T  PP .   Time derivative of   tV  is: 

 

                                                                       tttttV TT
xPxPxx                                                   (31) 

 

For  tx in eq. (31),  substituting eq. (24), once the fuzzy controller eq. (23) is employed in eq. (2), 

there exists a positive-definite matrix  0T  PP  such that the following matrix inequalities : 

 

                          
p

T

p

T

i

T

jjii

T

i
AAPBKKPBPAPA      0

1
2

2jp

T

jp









 QPPKBKB


                (32) 

are satisfied for i, j=1,2,…, r.    The closed-loop system of  eq. (24) is bounded and H  performance 

of eq. (29)  is satisfied,  where  Q
min1

c  ,   whenever   
1bd

cwt x  ,  and   0tV  .    Using  

LYAPUNOV extension,  this demonstrates that the trajectories of the closed-loop system eq. (24) are 

bounded,  resulting for  0t   to  
f

tt  , in: 

 

                                                 0VtV
f
        dtttdttt ft

0

T2ft

0

T

 wwxQx                              (33) 

                                                         dttt00dttt ft

0

T2Tft

0

T

 wwPxxxQx                                 (34) 

 

this is  eq. (29)  and the  


H  control performance is achieved with a prescribed 2 .   In the case of 

 tw ,  if the fuzzy controller eq. (24) is employed in the closed-loop nonlinear system eq. (25) and 

there exists a positive-definite matrix  0T  PP  such that the matrix inequalities given in eq. (32) 

are valid.   This results in quadratically stable closed-loop system of  eq. (24). 

 

 

4.  


H  Linear matrix inequality, LMI formulation 
     It is not obvious to find an analytical common solution in such away  0T  PP  for eq. (32).   The 

synthesis problem is reformulated into the Linear Matrix Inequality problem (LMI).  The matrix 

inequalities in eq. (32) are transformed to the equivalent LMI’s by introducing new variables W  and 

j
Y ,  in such a way   1 PW  and   WKY

jj
 , is equivalent to the following matrix inequalities:  

 

                         0
1

2
2jp

T

jpp

T

p

T

i

T

jjii

T

i









 WQWIYBYBWAWABYYBWAWA


                 (35) 

    Expressed in matrix form: 

                                                     

 
0

0

0

1
2

1

p

T

p

jp

T

jp2

T

i

T

jjii

T

i









































QAAW

IYB

WYBIBYYBWAWA
                                        (36) 

for   r,...,2,1j,i  .   If the LMI’s in eq. (35)  have a positive-definite solution for W ,  the closed-loop 

system is stable and the 


H control performance in eq. (29) is guaranteed for a  .   Finally, the 


H optimization design for fuzzy control system of eq. (2) is formulated as the following constrained 

optimization problem: 

                                                      Minimize 2     Subject to       0T WW  
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                                        and          
 

 
0

0

0

1
2

1

p

T

p

jp

T

jp2

T

i

T

jjii

T
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





































QAAW

IYB

WYBIBYYBWAWA
                               (37) 

      Solutions for W  and 
j

Y  are computed numerically by convex optimization algorithm. This is done 

in reference to the LMI Toolbox of Matlab. By expressing eq. (37) in to the standard form, 


H  

controller 
j

K  is synthesized. Having derived an LMI formulation, the next section shows how to 

validate the proposed fuzzy control methodology. 

 

5.   Results, Neuro-Fuzzy model building and controller synthesis  
5.1  Machine dynamics validation 
       Within this section we shall present few simulation results.  We shall adopt the following machine 

real parameters. Armature winding resistance 85.2R
a
 , armature winding inductance H008.0L

a
 , 

field winding resistance 960R
f
 , field winding voltage V240V

f
 , armature winding turns: 

50N
a
 , field winding turns 1040N

f
 . Torque design constant 85.2R

a
 , WbxA/Nm713.1k

m
 . 

In addition, field residual flux WbT0014.0f
r
 , and shaft inertia 2kgm0088.0J  .  The nonlinear 

magnetizing characteristic of the machine is given by eq. (1), and 
a

V  is the armature winding input 

voltage.  In fig. 3. initially, we verified the machine dynamic and motion as were described by eq. (1). 

A typical machine speed versus time is shown, where a realistic machine behavior with typical 

machine parameters were obtained. In fig 4., learning patterns generation through suitable machine 

excitation are shown.  In this respect,  fig. 4(a) presents the randomly input excitations of voltage to the 

machine armature winding,  whereas in fig. 4(b) we show another random excitations of load torque 

load
T ,  as input to machine outer shaft.  After learning,  we shall extract the linear fuzzy models. 

 

5.2.  Building of machine linear models via the five layers Neuro-Fuzzy system 
      A fuzzy  model can be constructed from (I/O) training patterns.  In this respect,  we have already  

shown the corresponding I/O training data used for the modeling. Two inputs (voltage and input 

torques,  and one output,  the motor speed) are shown.  Furthermore,  we have shown the results of 

modeling the nonlinear machine.  It shows that, although the motor has a highly  nonlinear behavior,  

but the used fuzzy modeling algorithm was able to follow the motor actual response. The modeling 

error is small.  This shows how accurate the fuzzy linear models are.  Such linearized modes will be 

shortly used in designing a robust controller via the LMI.   A typical corresponding state space motor 

sub-models are: 
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    Two linear sub-models state-space matrices have been derived for the machine dynamics.  Neuro-

fuzzy modeling is applied to the problem of identifying a discrete machine model.  A fuzzy  model can 
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be constructed from data by using outputs of the clustering algorithm and by constructing regressors to 

form inputs to the used Neuro-Fuzzy architecture.  
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Figure 3.  Initially, verifying the machine dynamic and motion as described by eq. (1).   

A typical machine speed versus time.   A realistic machine behavior with physical machine parameters. 
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                                       (a)                                                                               (b) 

 

Figure 4.  Learning patterns generation through suitable machine excitation. 

(a)  Random input excitations of voltage to the machine armature winding. 

(b)  Another random excitations of load torque, as input to machine outer shaft. 
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Figure 5.  Learning pattern gathering through tabulation of machine responses. 

(a)  Machine electromagnetic torque (Nm) versus time. 

(b)  Machine armature current in (A) versus time. 
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Figure 6.  Validating the resulting fuzzy sub-models. 

(a)  Typical machine (I/O) training patterns. 

(b)   Modeling error autocorrelation of the machine system.  Autocorrelation figures indicate that, the  

Neuro-fuzzy has produced high degree of  modeling accuracy. 
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Figure 7.  Validating  machine open and closed loop responses. 

 

(a)   Open loop machine actual real-time output response, compared to Neuro-Fuzzy model response. 

This is used for validating the Neuro-Fuzzy model building. 

(b)   Different machine closed loop impulse output responses.  Controllers 
j

K  were synthesized for 

various machine operating regions, while relying on LMI approach. 

 

5.3  Training patterns generation, gathering, and fuzzy linear model validation 

      In section (4) we have presented a methodology of synthesizing a robust fuzzy based 


H  

controller for the nonlinear electrical machine system.  That was based in using the LMI formulation 

given by eq. (37).   This requires the gathering of linear fuzzy sub-models via training the adopted five 

layers Neuro-Fuzzy system.  Within this context,  we shall now rather focus on simulation results for 

such a typical 


H  machine controller synthesis.   

 

     In this respect,  fig. 5 shows the gathering of learning patterns, through tabulation of machine 

responses. In this particular regard, fig. 5(a) is the resulting machine electromagnetic torque versus 

time, whereas, fig. 5(b) is the machine armature current versus time.  At this stage,  the five layers 

Neuro-Fuzzy is ready to be trained and  learn the linear fuzzy machine models.   

 

    For Validating the synthesized  Fuzzy Models,  in fig. 6., we show typical obtained results for 

validating the resulting fuzzy sub-models.  In fig. 6(a), we show particular typical machine (I/O) 

training patterns. The training patterns were selected in such a way that to let the machine to be excited 

within the most possible frequencies of operational spectrum.  In corresponding to this, in fig. 6(b) we 

likewise present the modeling error autocorrelation of the machine system.  Autocorrelation results are 

indicating that, the Neuro-fuzzy has produced high degree of  modeling accuracy.  Neuro-fuzzy has 

produced high degree of accuracy.  Large number of errors are located near to the zeros with (425). 

This shows a great deal of modeling accuracy. A conventional linear difference model with 

REGRESSORS is constructed, hence containing previous inputs and outputs.  The created  machine 

model has six inputs and two outputs, hence two groups of seven sets of MFs are shown.  Each 

universe of discourse (set) has three MFs representing the assigned three clusters.  Such memberships 

are representing the inputs range. 
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5.4  Training patterns generation, gathering, and fuzzy linear model validation 
     Finally, in fig. 7. we do a validation of the machine open and closed loop responses, while 

incorporating the obtained linear fuzzy sub models.  In this respect,  in fig. 7(a) we show machine real-

time output responses, compared to Neuro-fuzzy model response,  hence validating the linear outputs 

of the  Neuro-fuzzy model building.   

 

     In fig. 7(a) we show the open loop machine actual real-time response, compared to FN model 

response, validating the Neuro-fuzzy model building.  Furthermore, fig. 7(b),  we show the closed loop 

machine responses via controller synthesis for various operating machine regions.  It is very clear that, 

the synthesized linear fuzzy controllers has produced good degree of accuracy in terms of the desired 


H  performance.  

 

    The figure of fig. 7(b), is also a clear evidence that the controller synthesis for various operating 

machine regions, is resulting  excellent machine return to original state. This verifies the controller 

synthesis, while relying on fuzzy sub-linear models of the machine.  

  
5.5  Results of  machine behavior with Neuro-Fuzzy models 
      Further analysis of the results given in fig. 7(b), it shows how the synthesized controller is able to 

robustly regulate  the electrical machine  output.  It indicates the machine is being brought back to the 

zero state, thought after the system has been subjected to a very worse disturbance at its input.  

Feedback gains are used to form a  closed loop system.  Further examination of the closed loop 

frequency responses over a quit wide range of frequencies has revealed that the motor controller 

system was able to reject the effect of disturbances with high frequencies components. The three 

responses are for  machine outputs over the time domain are shown in fig. 7 (b). The response is settled 

down of maximum of  (11 seconds), and a minima of (0.02 seconds). This is considered as a fast 

settling time according to the machine system subject to the worst disturbance effect. 

 

 

6. Conclusion 
      In this manuscript a study regarding a modeling of a nonlinear electrical machine has been 

presented. The approach followed was related to the use of some kind of intelligent modeling 

technique known as the TAKAGI AND SUGENO (T-S).  T-S modeling has been employed to extract 

some sub-linear fuzzy models of a nonlinear electric machine system.  The system under study was 

excited with some sort of random input signals, hence, the corresponding outputs were recorded.  

Input-output pattern did represent the training data for the proposed fuzzy system.  After the machine 

sub-models were acquired,  robust  sub controllers were designed accordingly via an LMI approach.  

The employed Neuro-Fuzzy system was an excellent approach in terms of building linear models. In 

addition,  the presented Neuro-Fuzzy was a transparent approach in terms building linear fuzzy models, 

not similar to the approach of Neural Network, where it is considered as a black box modeling 

approach. 

 

     However, the presented Neuro-Fuzzy has a number of limitations. The primary one is related to the 

training and learning time.  As the network architecture gets complicated,  the training and learning   

rates get much difficult to achieve.  Therefore, the design of  such a Neuro-Fuzzy, is a tradeoff between 

network size, and the modeling accuracy.  Another related issue to Neuro-Fuzzy limitation,  is related 

to the smoothness  in while presenting  the training patterns.  It was found, once the training patterns 

are totally not smooth,  the  Neuro-Fuzzy was finding it difficult in ending the training phase.  

 

     The presented work will be further expanded.  This involves to train the Neuro-Fuzzy for further 

training samples, with even worst operational behavior of the machine. The additional will involve the 
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expanding of the network number of neurons, within each layer.  This will result in the additional fuzzy 

if-then rules.  The additional work will also involve reengineering of the control system architecture,  

in ach away that looks as a reference based control system, rather than a regulator class control. 
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