
International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 25, 2012

DOI: 10.7321/jscse.v2.n6.3

33

Modeling of a Memory Interface Using Modeling Language

*Akitoshi Matsuda1, Shinichi Baba2

1Dept. of Automotive Science, Kyushu University, Japan
2Kyushu Embedded Forum, Japan

1matsuda_aki@slrc.kyushu-u.ac.jp,2shinichi.baba@nifty.com

Abstract. In recent years, modeling languages have been widely used for algorithm development
and verification in embedded system design methodologies. Such languages allow behavior
descriptions or structure descriptions to be expressed in a specification that is defined by a
consistent set of designers. It is expected that modeling language-based designs can reduce
development times without sacrificing quality. This paper presents a case study of the design of a
memory interface algorithm for peripheral memory circuits using a modeling language. The
results of the case study demonstrate that the number of lines of source code of the modeling
language-based design flow has been reduced by 86% and 78% compared to a traditional
register transfer language (RTL) and the C language, respectively.

Keywords: modeling language, algorithm development, lines of source code

1. Introduction

The design of current large-scale and highly functional digital home appliance frequently suffers
from serious issues such as deterioration in quality and increase in the time and cost of developing the
embedded system algorithm. The use of modeling languages in the design methodology focuses efforts
to improve efficiency on the development of increasingly complex hardware and algorithm design in
system-level design [1]. This design methodology involves a model-based design methodology and a
modeling language-based design methodology. In this paper, a model-based design (Figure 1) shows
that arithmetic element models (from multipliers, adders, and multiplexers to large-scale features such
as filters) are provided as a combination of hardware circuitry [2]. Figure 2 shows a sorting circuit,
which is a type of processing algorithm that can be realized by a modeling language-based design. This
figure helps us to understand the operation processes in algorithm development [3]. In addition, these
two design methodologies make automatic HDL simulation and generation possible [4]. The adoption
of a modeling language facilitates a better understanding of hardware configurations and architectures,
compared to both the C language and a register transfer language (RTL).

Thus, the adoption of a modeling language for hardware development will reduce the manual effort
required for algorithmic level design, implementation, and verification compared to traditional
methods, which are used in manually coded RTL. Visualization features can then be added to the
whole algorithm structure in the system design to further reduce development time and improve
quality.

In order to apply an efficient design approach, the modeling language-based design is adopted
above the signal processing hardware level at the stage of algorithm development. Modeling language-
based design flow is realized from the algorithmic level of the development stage to the auto-
generation of RTL. We adopt the method for efficient hardware design, simplifying the hardware trade-
off analysis and visualizing the overall structure of the algorithm. In this paper, we report the results of
a case study applying the modeling language approach to memory interface development.

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 25, 2012

DOI: 10.7321/jscse.v2.n6.3

34

Our paper is structured as follows: the next Section 2 gives an overview of related work in both C-
based design and modeling language design. The outline of a design methodology for a modeling
language is described in Section 3. In the same section we also present the design description
methodology for the implementation and simulation of the modeling language. Section 4 describes the
set of experiments we conducted on diverse real world applications on the DDR2 memory controller.
After that, Section 5 gives a conclusion. Finally, Section 6 gives a future work.

Figure 1. Arithmetic Element Models in Model-based Design

Figure 2. Modeling Language Description Example

2. Related work

A variety of design automation techniques have been proposed to reduce the man-hours
involved in the hardware design of embedded systems. The most general of these is a C
language-based (C/C++, SystemC) design methodology to automatically convert to RTL by
behavioral synthesis tools [5]. However, C-based languages are originally object oriented

Model-Based RTL

if (sel)
 y=d0
else
 y=d1 Multiplexer

sel

d1

assign
y=a+b

a +
b +

Adder

d0 y

y

(* synthesize *)
module mkTb(Empty);
 Reg#(int) x <- mkReg(15);
 Reg#(int) y <- mkReg(6);
 rule swap ((x > y) && (y != 0));
 x <= y;
 y <= x;
 endrule
 rule subtract ((x <= y) && (y != 0));
 y <= y - x;
 endrule
 rule fin (y == 0);
 $display(x);
 $finish(0);
 endrule
endmodule

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 25, 2012

DOI: 10.7321/jscse.v2.n6.3

35

software that will be in the form of a sequential program description. In addition, for system-
level design, C-based languages do not implement the operator and data structure needed for
operation, so it is necessary to create the desired set of functions for planning through to
implementation, which imposes additional costs [6].

For example, for behavioral synthesis from a C-based design, we need to use a Control Data
Flow Graph (CDFG). In this case, some form of mapping is needed for a change from the
description of the serial type format in the control flow graph to the description of the parallel
type format. In contrast, using a modeling language, it is possible to use the description of the
parallel type format because it is useful as a hardware model. In addition, it has been prepared
in advance as a library module with storage or connectivity functions. Below, we list the main
advantages of modeling language design compared to C-based design [7].

 • Easy to build a test bench
 • Simple concept of parallel programming
 • Easy to describe interface between modules
In other words, in modeling language design, the simulation environment has been enhanced

to include functional verification. Thus, if we take advantage of this design, we can accurately
and quickly simulate a series design flow from algorithm development to hardware design
using a single simulation tool. In addition, if we can automatically and reliably convert to RTL
from a modeling language to implement the hardware from the algorithm level, while
maintaining a high level of performance, then the designed hardware will exhibit high quality
and high performance circuits.

3. Sorting algorithm using modeling language

We describe the outline of a design methodology for a modeling language. Specifically,
using the modeling language, we have developed an algorithm (sort), which describes one type
of numerical processing. Sorting is an operation in which a set of data is realigned, or sorted,
using certain criteria. The main sorting algorithms are as follows.

(Module）
1 (* execution_order =“disp, fin” *)
2 (* preempts = “(swap_3, swap_2, swap_1, swap), fin” *)
3 (* synthesize *)
4 module mkBubSort (BubSort_IFC);
5 Vector#(5, Reg#(int)) x <- replicateM (mkReg(0));
6 Reg#(Bool) sorted <- mkDReg(False);
7
8 rule disp ;
9 $write(“%2d : ”, $time);
10 for (Integer i=0; i<5; i=i+1)
11 $write(“x[%0d]=%2d, ”, i, x[i]);
12 $display(“”);
13 endrule
14
15 rule fin (x[0] != 0);
16 sorted <= True;
17 endrule
18
19 for (Integer i=0; i<4; i=i+1) begin
20 rule swap ((x[i] > x[i+1]));
21 x[i] <= x[i+1];
22 x[i+1] <= x[i];
23 endrule
24 end
25

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 25, 2012

DOI: 10.7321/jscse.v2.n6.3

36

Figure 3. Sort Circuit for Modeling Language

(Module [Cont.]）
26 method Action start(Vector#(5, int) a);
27 writeVReg(x, a);
28 endmethod
29
30 method Vector#(5, int) result() if (sorted);
31 return readVReg(x);
32 endmethod
33
34 endmodule

(Test bench)
35 import Vector::*;
36 import DReg::*;
37
38 (* synthesize *)
39 module mkTb(Empty);
40
41 let bsort <- mkBubSort();
42
43 int vals[5] = {23, 10, 5, 78, 16};
44 Reg#(int) cnt <- mkReg(0);
45
46 rule r1 (cnt == 0);
47 bsort.start(arrayToVector(vals));
48 cnt <= 1;
49 endrule
50
51 rule r2 (cnt == 1) ;
52 $display(“FINISHED”);
53 $write(“%2d : ”, $time);
54 for (Integer i=0; i<5; i=i+1)
55 $write(“a[%0d]=%2d, ”, i, bsort.result[i]);
56 $display(“”);
57 $finish(0);
58 endrule
59
60 endmodule

(Interface)
61 interface BubSort_IFC;
62 method Action start(Vector#(5, int) a);
63 method Vector#(5, int) result();
64 endinterface

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 25, 2012

DOI: 10.7321/jscse.v2.n6.3

37

1. Exchange sort
2. Selection sort
3. Insert sort
4. Heap sort
5. Shell sort
6. Quick sort

In this paper, we have chosen an exchange sort as a motif. This exchange sort is used in the

process of sorting the five numbers of type “int” the algorithm. Figure 3 shows the description
of the algorithm development for exchange sort by the modeling language. In this figure, it can
be seen that the algorithm is composed of a sort circuit module (mkBubSort), a test bench
module (mkTb), and a sort circuit interface (BubSort_IFC) [8].

There are two methods (“result” and “start”) in the sort circuit modules, at lines 26–28 and
30–32. The start method takes an argument of type Vector with five elements of type “int,” and
assigns five registers (x[0]–x[4]) inside the module to each variable using the “writeVReg”
function. These five registers are instantiated with an initial value of zero on line 5. The result
method then outputs the value of the register to the outside when the sort is complete. The
“sorted” condition of this method is the flag that indicates that the sort has completed. The flag
is set when the rule “fin” has been executed on lines 15-17. Lines 19–24 also define four rules
to perform the sorting. These rules execute a swap depending on the conditions under which
adjacent values are compared in the registers. Rules generated by the “for” statement are named
as swap, swap_1, swap_2, and swap_3. The pragma on line 2 dictates that, while one of the four
rules to perform the swap is running, the “fin” rules still specify the criteria for exclusive
execution so that it does not run. This pragma sets the “sorted” flag (i.e., sort is complete) when
the rule of swap is not running and controls the execution condition of the “result” method.

A sort is started after passing a variable of type Vector to the “start” method in the sorting

circuit at the rule “r1” of lines 46-49 in the test bench. When the value of “cnt” register is set to
1, the state moves to next, for which rule “r2” of lines 51-58 can be run at the same time. The
rule “r2” condition is shown explicitly (cnt == 1), and it is not executed until the state for each
action listed in the rule will be ready to run. In other words, the rule “r2” calls the “result”
method of the sorting circuit module, the screen is displayed by the sorted result after sorting is
complete, and the simulation is finished. Figure 4 shows the RTL code that is automatically
generated from these modeling languages.

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 25, 2012

DOI: 10.7321/jscse.v2.n6.3

38

Figure 4. Auto Generation RTL by Modeling Language

4. Experiment results

In this section, we report a case study of applying the modeling language-based design to
peripheral circuits with DDR2-SDRAM (DDR2) [9]. The modeling language description can
describe the behavior model, and we are able to simulate it on Bluespec [10], which is a
modeling language design tool. In this experimental process, a behavior of the specification is
verified by the validity of the algorithm and executed by the RTL auto-generation. The RTL is
automatically generated by the modeling language at the algorithm level. Finally, we compare
the number of lines of code in the modeling language and the RTL and C++ language.

module mkBubSort(CLK, RST_N, start_a, EN_start,RDY_start, result,RDY_result);
 input CLK, RST_N, EN_start;
 input [159 : 0] start_a;
 output RDY_start, RDY_reset;
 output [159 : 0] result;
 ・

・

・
always@(negedge CLK)
 begin

#0;
if (RST_N)
 begin
 v__h663 = $time;
 #0;
 end
if (RST_N) $write(“%2d : ”, v__h663);
if (RST_N) $write(“x[%0d]=%2d, ”,
 $signed(32'd0), $signed(x));
if (RST_N) $write(“x[%0d]=%2d, ”,
 $signed(32'd1), $signed(x_1));
if (RST_N) $write(“x[%0d]=%2d, ”,
 $signed(32'd2), $signed(x_2));
if (RST_N) $write(“x[%0d]=%2d, ”,
 $signed(32'd3), $signed(x_3));
if (RST_N) $write(“x[%0d]=%2d, ”,
 $signed(32'd4), $signed(x_4));
if (RST_N) $display(“”);
end

endmodule

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 25, 2012

DOI: 10.7321/jscse.v2.n6.3

39

First, the DDR2 memory interface requires a bank address, column address, row address, and
commands as input. In contrast to these inputs, they output the bank address, commands, and an
address to the DDR2. Figure 5 shows an overview of these features. In addition, Figure 5 shows
the list of input and output commands of the DDR2 memory interface.

Figure 6 represents the state transition, showing the relationship between the state and
transition behavior of the DDR2 memory controller. Figure 6 represents the Finite State
Machine (FSM) of Mealy type. The following represent the current state vector x, the input
vector u, the next state vector y, and the output vector z:

piji BkzBkyBkuBx ∈∈∈∈)(,)(,)(,
(1)
where i, j, p represent the number of memory elements, external inputs, and external outputs,
respectively. In addition, B = {-1, 0, 1} is a set of three Boolean signal values. However, -1, 0,
1, respectively, represent a logical 0, an undefined value, and a logical 1. k is the index of the
input vector [11]. As shown in Figure 6, this FSM has 14 states and six external inputs of the
condition of the transition state, which consist of the six input values of “Init,” “Refresh,”
“Conflict,” “Wr,” “Rd” and “done.” The priority of these states is as follows: Refresh > Conflict
> “Wr”/”Rd”; “Rd” and “Wr” are not to occur at the same time.

After completing the description of the modeling language, we could use it to perform
simulations on the tool. In this process, the validity of the algorithms was verified. Once a result
is obtained in accordance with the design specification, the next step is to automatically
generate the RTL. Therefore, the RTL is automatically generated from the algorithm-level
modeling language.

Next, we compared the number of lines of the modeling language with the number of lines of
RTL, generated from the modeling language design tool. These results are shown in Table 1.
We can see that the number of lines of code in the modeling language decreases by a factor of 7
compared with the RTL. The number of lines of code in the test-bench is reduced by more than
a factor of 10. Traditional behavioral synthesis tools could compare the number of lines of code
in the design, but could not compare the number of lines of the test-bench. These tools could not
automatically generate the RTL for test-bench. Therefore, the ability to compare the test-bench
is a notable feature. The test-bench description can also be defined easily by the “rule”
description, similar to the design description in the case of the modeling language design.

We compared the number of lines of modeling language with the number of lines of C++
language, generated from the modeling language design tool. We can see that the number of
lines of code in the modeling language decreases by a factor of 5 compared with the C++
language.

The man-hours of modeling language-based design and manual coding HDL design were
compared. The modeling language-based design methodology, based on the system level of the
modeling language, ran a simulation considering the hardware design. Thus, the test-benches of
the HDL description were also generated automatically and simultaneously with the HDL
generation, and the simulation verification times were reduced. These reduced design iterations
will reduce the overall design man-hours. The design man-hours were reduced from 73 h to 48 h
in this design case study, a reduction of approximately 34%.

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 25, 2012

DOI: 10.7321/jscse.v2.n6.3

40

Figure 5. Function Guideline of DDR2 Memory Interface

Init

Precharge

Refresh

Active

ActiveWait

FirstWrite

WriteWait

BurstWrite

FirstRead

ReadWait

BurstRead

WriteRead

ReadWrite

Wr Rd

Rd

Wr

Wr

Wr / Rd

Refresh
Conflict /
Refresh

Conflict /
Refresh

Conflict /
Refresh

done

done

done

done

done done

Rd

done

Wr / Rd

Idle Initialization

Figure 6. FSM of DDR2 Memory Controller

Input:
 Bank address (3bit)
 Column address (13bit)
 Row address (13bit)
 Command

Output:
 Bank address (3bit)
 Address (13bit)
 Command

Input command:
Nop : No operation
Init : Operation Instruction – Initial setup
Refresh : Operation Instruction - Refresh setup
Wr : Write instruction
Rd : Read instruction

Output command:

DDR2_LoadMode : Mode register set instruction
DDR2_Refresh : Refresh instruction
DDR2_Precharge : Pre-charge instruction
DDR2_Active : Active instruction
DDR2_Write : Write instruction
DDR2_Read : Read instruction
DDR2_Nop : No operation

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 25, 2012

DOI: 10.7321/jscse.v2.n6.3

41

Table 1. Comparison of Lines of Source Code

5. Conclusion

It was shown that we could consistently automate all processes, from algorithm verification to a
system description and a detailed hardware design, using a modeling language-based design
methodology and Bluespec. As a result, we found that it was possible to execute the system-level
design quickly and with high quality. We believe that modeling language-based designs can be treated
as block modules in a database, without too much dependence on a high-level synthesis tool. By
adopting module visualization technology, we could prove that such algorithm modules will be
accelerated by reusing old modules and properties.

6. Future work

Currently, we cannot adopt a modeling language-based approach for all hardware development. For
example, advanced functions and/or complex control logic are not yet supported. We will continue to
investigate such areas.

References
[1] W. Chen, X. Han, and R. Domer, “Out-of-order parallel simulation for ESL design,” in Proc. of

DATE’12, pp.141-146, 2012.
[2] M.D. Natale and H. Zeng, “Task implementation of synchronous finite state machines,” in Proc. of

DATE’12, pp.206-211, 2012.
[3] B. Safarinejadian, “Discrete event simulation and petri net modeling for reliability rnalysis,”

International Journal of Soft Computing and Software Engineering (JSCSE), Vol.2, No.5, pp.25-
34, 2012.

[4] Y. Wang, P. Zhang, X. Cheng, and J. Cong, “An integrated and automated memory optimization
flow for FPGA behavioral synthesis,” in Proc. of ASP-DAC 2012, pp.257-262, 2012.

[5] G. Arnout, “C for System Level Design,” in Proc. of DATE’99, pp.384-386, 1999.
[6] A. Ghosh, J. Kunkel, and S. Liao, “Hardware Synthesis from C/C++,” in Proc. of DATE’99,

pp.387-389, 1999.
[7] A. Yamada, K. Nishida, R. Sakurai, A. Kay, T. Nomura, and T. Kambe, “Hardware synthesis with

the Bach system,” in Proc. of IEEE ISCAS’99, Vol.VI, pp.366-369, 1999.
[8] A. Matsuda and M. Sugihara, “A case study of memory peripheral circuits using a modeling

language design,” in Pro. of ITC-CSCC2011, pp.786-787, 2011.
[9] M.D. Gomony, C. Weis, B. Akesson, N. Wehn, and K. Goossens, “DRAM selection and

configuration for real-time mobile systems,” in Proc. of DATE’12, pp.51-56, 2012.
[10] Bluespec Inc. Interra Systems’ Benchmarking of Bluespec Compiler Uncovers No Compromises

in Quality of Results (QoR), May 2004.
[11] S.S.S. Noori, S.A.S. Noori, and S.M.L. Baghal, “Optimization of routes in mobile ad hoc

networks using artificial neural networks,” International Journal of Soft Computing and Software
Engineering (JSCSE), vol.2, No.4, pp.36-50, 2012.

 Design Test-bench
RTL 2929 434
C++ 1852 N/A

Modeling 412 36

