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Abstract. In recent years, modeling languages have been widely used for algorithm development 
and verification in embedded system design methodologies. Such languages allow behavior 
descriptions or structure descriptions to be expressed in a specification that is defined by a 
consistent set of designers. It is expected that modeling language-based designs can reduce 
development times without sacrificing quality. This paper presents a case study of the design of a 
memory interface algorithm for peripheral memory circuits using a modeling language. The 
results of the case study demonstrate that the number of lines of source code of the modeling 
language-based design flow has been reduced by 86% and 78% compared to a traditional 
register transfer language (RTL) and the C language, respectively. 
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1. Introduction 
 

The design of current large-scale and highly functional digital home appliance frequently suffers 
from serious issues such as deterioration in quality and increase in the time and cost of developing the 
embedded system algorithm. The use of modeling languages in the design methodology focuses efforts 
to improve efficiency on the development of increasingly complex hardware and algorithm design in 
system-level design [1]. This design methodology involves a model-based design methodology and a 
modeling language-based design methodology. In this paper, a model-based design (Figure 1) shows 
that arithmetic element models (from multipliers, adders, and multiplexers to large-scale features such 
as filters) are provided as a combination of hardware circuitry [2]. Figure 2 shows a sorting circuit, 
which is a type of processing algorithm that can be realized by a modeling language-based design. This 
figure helps us to understand the operation processes in algorithm development [3]. In addition, these 
two design methodologies make automatic HDL simulation and generation possible [4]. The adoption 
of a modeling language facilitates a better understanding of hardware configurations and architectures, 
compared to both the C language and a register transfer language (RTL). 

Thus, the adoption of a modeling language for hardware development will reduce the manual effort 
required for algorithmic level design, implementation, and verification compared to traditional 
methods, which are used in manually coded RTL. Visualization features can then be added to the 
whole algorithm structure in the system design to further reduce development time and improve 
quality. 

In order to apply an efficient design approach, the modeling language-based design is adopted 
above the signal processing hardware level at the stage of algorithm development. Modeling language-
based design flow is realized from the algorithmic level of the development stage to the auto-
generation of RTL. We adopt the method for efficient hardware design, simplifying the hardware trade-
off analysis and visualizing the overall structure of the algorithm. In this paper, we report the results of 
a case study applying the modeling language approach to memory interface development. 
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Our paper is structured as follows: the next Section 2 gives an overview of related work in both C-
based design and modeling language design. The outline of a design methodology for a modeling 
language is described in Section 3. In the same section we also present the design description 
methodology for the implementation and simulation of the modeling language. Section 4 describes the 
set of experiments we conducted on diverse real world applications on the DDR2 memory controller. 
After that, Section 5 gives a conclusion. Finally, Section 6 gives a future work. 

 

Figure 1. Arithmetic Element Models in Model-based Design 

 

Figure 2. Modeling Language Description Example 

 
2. Related work 

A variety of design automation techniques have been proposed to reduce the man-hours 
involved in the hardware design of embedded systems. The most general of these is a C 
language-based (C/C++, SystemC) design methodology to automatically convert to RTL by 
behavioral synthesis tools [5]. However, C-based languages are originally object oriented 
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(* synthesize *) 
module mkTb(Empty); 
 Reg#(int) x <- mkReg(15); 
 Reg#(int) y <- mkReg(6); 
 rule swap ((x > y) && (y != 0)); 
 x <= y; 
 y <= x; 
 endrule 
 rule subtract ((x <= y) && (y != 0)); 
 y <= y - x; 
 endrule 
 rule fin (y == 0); 
 $display(x); 
 $finish(0); 
 endrule 
endmodule 
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software that will be in the form of a sequential program description. In addition, for system-
level design, C-based languages do not implement the operator and data structure needed for 
operation, so it is necessary to create the desired set of functions for planning through to 
implementation, which imposes additional costs [6]. 

For example, for behavioral synthesis from a C-based design, we need to use a Control Data 
Flow Graph (CDFG). In this case, some form of mapping is needed for a change from the 
description of the serial type format in the control flow graph to the description of the parallel 
type format. In contrast, using a modeling language, it is possible to use the description of the 
parallel type format because it is useful as a hardware model. In addition, it has been prepared 
in advance as a library module with storage or connectivity functions. Below, we list the main 
advantages of modeling language design compared to C-based design [7]. 

 • Easy to build a test bench 
 • Simple concept of parallel programming 
 • Easy to describe interface between modules 
In other words, in modeling language design, the simulation environment has been enhanced 

to include functional verification. Thus, if we take advantage of this design, we can accurately 
and quickly simulate a series design flow from algorithm development to hardware design 
using a single simulation tool. In addition, if we can automatically and reliably convert to RTL 
from a modeling language to implement the hardware from the algorithm level, while 
maintaining a high level of performance, then the designed hardware will exhibit high quality 
and high performance circuits. 

 
3. Sorting algorithm using modeling language 
 

We describe the outline of a design methodology for a modeling language. Specifically, 
using the modeling language, we have developed an algorithm (sort), which describes one type 
of numerical processing. Sorting is an operation in which a set of data is realigned, or sorted, 
using certain criteria. The main sorting algorithms are as follows. 

 
(Module）
1 (* execution_order =“disp, fin” *) 
2 (* preempts = “(swap_3, swap_2, swap_1, swap), fin” *) 
3 (* synthesize *) 
4 module mkBubSort (BubSort_IFC); 
5 Vector#(5, Reg#(int)) x <- replicateM (mkReg(0)); 
6 Reg#(Bool) sorted <- mkDReg(False); 
7
8 rule disp ; 
9 $write(“%2d : ”, $time); 
10  for (Integer i=0; i<5; i=i+1) 
11  $write(“x[%0d]=%2d, ”, i, x[i]); 
12  $display(“”); 
13 endrule 
14 
15 rule fin (x[0] != 0); 
16  sorted <= True; 
17 endrule 
18 
19 for (Integer i=0; i<4; i=i+1) begin 
20  rule swap ((x[i] > x[i+1])); 
21   x[i] <= x[i+1]; 
22   x[i+1] <= x[i]; 
23  endrule 
24 end 
25 
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Figure 3. Sort Circuit for Modeling Language 

(Module [Cont.]）
26  method Action start(Vector#(5, int) a); 
27   writeVReg(x, a); 
28  endmethod 
29 
30  method Vector#(5, int) result() if (sorted); 
31   return readVReg(x); 
32  endmethod 
33 
34 endmodule

(Test bench) 
35  import Vector::*; 
36  import DReg::*; 
37 
38  (* synthesize *) 
39  module mkTb(Empty); 
40 
41  let bsort <- mkBubSort(); 
42 
43  int vals[5] = {23, 10, 5, 78, 16}; 
44  Reg#(int) cnt <- mkReg(0); 
45 
46  rule r1 (cnt == 0); 
47   bsort.start(arrayToVector(vals)); 
48   cnt <= 1; 
49  endrule 
50 
51  rule r2 (cnt == 1) ; 
52   $display(“FINISHED”); 
53   $write(“%2d : ”, $time); 
54   for (Integer i=0; i<5; i=i+1) 
55    $write(“a[%0d]=%2d, ”, i, bsort.result[i]); 
56    $display(“”); 
57   $finish(0); 
58  endrule 
59 
60  endmodule

(Interface) 
61  interface BubSort_IFC; 
62  method Action start(Vector#(5, int) a); 
63  method Vector#(5, int) result(); 
64  endinterface
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1. Exchange sort 
2. Selection sort 
3. Insert sort 
4. Heap sort 
5. Shell sort 
6. Quick sort 
 
In this paper, we have chosen an exchange sort as a motif. This exchange sort is used in the 

process of sorting the five numbers of type “int” the algorithm. Figure 3 shows the description 
of the algorithm development for exchange sort by the modeling language. In this figure, it can 
be seen that the algorithm is composed of a sort circuit module (mkBubSort), a test bench 
module (mkTb), and a sort circuit interface (BubSort_IFC) [8].  

There are two methods (“result” and “start”) in the sort circuit modules, at lines 26–28 and 
30–32. The start method takes an argument of type Vector with five elements of type “int,” and 
assigns five registers (x[0]–x[4]) inside the module to each variable using the “writeVReg” 
function. These five registers are instantiated with an initial value of zero on line 5. The result 
method then outputs the value of the register to the outside when the sort is complete. The 
“sorted” condition of this method is the flag that indicates that the sort has completed. The flag 
is set when the rule “fin” has been executed on lines 15-17. Lines 19–24 also define four rules 
to perform the sorting. These rules execute a swap depending on the conditions under which 
adjacent values are compared in the registers. Rules generated by the “for” statement are named 
as swap, swap_1, swap_2, and swap_3. The pragma on line 2 dictates that, while one of the four 
rules to perform the swap is running, the “fin” rules still specify the criteria for exclusive 
execution so that it does not run. This pragma sets the “sorted” flag (i.e., sort is complete) when 
the rule of swap is not running and controls the execution condition of the “result” method. 

 
A sort is started after passing a variable of type Vector to the “start” method in the sorting 

circuit at the rule “r1” of lines 46-49 in the test bench. When the value of “cnt” register is set to 
1, the state moves to next, for which rule “r2” of lines 51-58 can be run at the same time. The 
rule “r2” condition is shown explicitly (cnt == 1), and it is not executed until the state for each 
action listed in the rule will be ready to run. In other words, the rule “r2” calls the “result” 
method of the sorting circuit module, the screen is displayed by the sorted result after sorting is 
complete, and the simulation is finished. Figure 4 shows the RTL code that is automatically 
generated from these modeling languages. 
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Figure 4. Auto Generation RTL by Modeling Language 

4. Experiment results 
 

In this section, we report a case study of applying the modeling language-based design to 
peripheral circuits with DDR2-SDRAM (DDR2) [9]. The modeling language description can 
describe the behavior model, and we are able to simulate it on Bluespec [10], which is a 
modeling language design tool. In this experimental process, a behavior of the specification is 
verified by the validity of the algorithm and executed by the RTL auto-generation. The RTL is 
automatically generated by the modeling language at the algorithm level. Finally, we compare 
the number of lines of code in the modeling language and the RTL and C++ language.  

module mkBubSort(CLK, RST_N, start_a, EN_start,RDY_start, result,RDY_result); 
 input  CLK, RST_N, EN_start; 
 input  [159 : 0] start_a; 
 output RDY_start, RDY_reset; 
 output [159 : 0] result; 
 ・

・

・
always@(negedge CLK) 
 begin 

#0; 
if (RST_N) 
 begin 
 v__h663 = $time;   
 #0; 
 end 
if (RST_N) $write(“%2d : ”, v__h663); 
if (RST_N) $write(“x[%0d]=%2d, ”,  
 $signed(32'd0), $signed(x)); 
if (RST_N) $write(“x[%0d]=%2d, ”,  
 $signed(32'd1), $signed(x_1)); 
if (RST_N) $write(“x[%0d]=%2d, ”,  
 $signed(32'd2), $signed(x_2)); 
if (RST_N) $write(“x[%0d]=%2d, ”,  
 $signed(32'd3), $signed(x_3)); 
if (RST_N) $write(“x[%0d]=%2d, ”,  
 $signed(32'd4), $signed(x_4)); 
if (RST_N) $display(“”); 
end 

endmodule
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First, the DDR2 memory interface requires a bank address, column address, row address, and 
commands as input. In contrast to these inputs, they output the bank address, commands, and an 
address to the DDR2. Figure 5 shows an overview of these features. In addition, Figure 5 shows 
the list of input and output commands of the DDR2 memory interface. 

Figure 6 represents the state transition, showing the relationship between the state and 
transition behavior of the DDR2 memory controller. Figure 6 represents the Finite State 
Machine (FSM) of Mealy type. The following represent the current state vector x, the input 
vector u, the next state vector y, and the output vector z:

piji BkzBkyBkuBx ∈∈∈∈ )(,)(,)(,
(1) 
where i, j, p represent the number of memory elements, external inputs, and external outputs, 
respectively. In addition, B = {-1, 0, 1} is a set of three Boolean signal values. However, -1, 0, 
1, respectively, represent a logical 0, an undefined value, and a logical 1. k is the index of the 
input vector [11]. As shown in Figure 6, this FSM has 14 states and six external inputs of the 
condition of the transition state, which consist of the six input values of “Init,” “Refresh,” 
“Conflict,” “Wr,” “Rd” and “done.” The priority of these states is as follows: Refresh > Conflict 
> “Wr”/”Rd”; “Rd” and “Wr” are not to occur at the same time. 

After completing the description of the modeling language, we could use it to perform 
simulations on the tool. In this process, the validity of the algorithms was verified. Once a result 
is obtained in accordance with the design specification, the next step is to automatically 
generate the RTL. Therefore, the RTL is automatically generated from the algorithm-level 
modeling language.

Next, we compared the number of lines of the modeling language with the number of lines of 
RTL, generated from the modeling language design tool. These results are shown in Table 1. 
We can see that the number of lines of code in the modeling language decreases by a factor of 7 
compared with the RTL. The number of lines of code in the test-bench is reduced by more than 
a factor of 10. Traditional behavioral synthesis tools could compare the number of lines of code 
in the design, but could not compare the number of lines of the test-bench. These tools could not 
automatically generate the RTL for test-bench. Therefore, the ability to compare the test-bench 
is a notable feature. The test-bench description can also be defined easily by the “rule” 
description, similar to the design description in the case of the modeling language design.  

We compared the number of lines of modeling language with the number of lines of C++ 
language, generated from the modeling language design tool. We can see that the number of 
lines of code in the modeling language decreases by a factor of 5 compared with the C++ 
language.  

The man-hours of modeling language-based design and manual coding HDL design were 
compared. The modeling language-based design methodology, based on the system level of the 
modeling language, ran a simulation considering the hardware design. Thus, the test-benches of 
the HDL description were also generated automatically and simultaneously with the HDL 
generation, and the simulation verification times were reduced. These reduced design iterations 
will reduce the overall design man-hours. The design man-hours were reduced from 73 h to 48 h 
in this design case study, a reduction of approximately 34%. 
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Figure 5. Function Guideline of DDR2 Memory Interface 
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Figure 6. FSM of DDR2 Memory Controller 

Input: 
 Bank address (3bit) 
 Column address (13bit) 
 Row address (13bit) 
 Command 

 

Output: 
 Bank address (3bit) 
 Address (13bit) 
 Command

Input command: 
Nop : No operation 
Init : Operation Instruction – Initial setup 
Refresh : Operation Instruction - Refresh setup 
Wr : Write instruction 
Rd : Read instruction 

 
Output command: 

DDR2_LoadMode : Mode register set instruction 
DDR2_Refresh : Refresh instruction 
DDR2_Precharge : Pre-charge instruction 
DDR2_Active : Active instruction 
DDR2_Write : Write instruction 
DDR2_Read : Read instruction 
DDR2_Nop : No operation
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Table 1. Comparison of Lines of Source Code 

5. Conclusion 
 

It was shown that we could consistently automate all processes, from algorithm verification to a 
system description and a detailed hardware design, using a modeling language-based design 
methodology and Bluespec. As a result, we found that it was possible to execute the system-level 
design quickly and with high quality. We believe that modeling language-based designs can be treated 
as block modules in a database, without too much dependence on a high-level synthesis tool. By 
adopting module visualization technology, we could prove that such algorithm modules will be 
accelerated by reusing old modules and properties. 

 
6. Future work 

Currently, we cannot adopt a modeling language-based approach for all hardware development. For 
example, advanced functions and/or complex control logic are not yet supported. We will continue to 
investigate such areas.  
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