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Abstract. This paper focuses on the scalability problems for high-speed switches, and presents an 
integrated scheduling algorithm that supports unicast and multicast traffic efficiently in 
input-queued packet switches. Considering the tradeoff balancing complexity and performance, the 
proposed integrated algorithm performs without iteration, and reduces the scheduling overhead to 
O(N) with a two-phase (request-grant) sequential scheduling for unicast and multicast traffic. In 
addition, it can be implemented in a fully distributed way, which is more suitable for high-speed 
switches. Simulation results show that the proposed algorithm exhibits a good performance in terms 
of throughput and average delay, at different traffic compositions under various traffic patterns. 
 
Keywords: integrated scheduling algorithm, IQ switches, multicast, scalability  
 
1. Introduction 
 

The growing number of newly emerging applications on the Internet has created an increasing need 
for efficient multicast traffic support. As a result, with the continuous growth of bandwidth in fiber links, 
the need for switches/routers that are capable of switching unicast and multicast cells at very high speeds is 
urgent. To the best of our knowledge, the integrated scheduling algorithms presented are, in fact, a 
combination of earlier unicast and multicast algorithms unified in one integrated scheduler. The input 
queuing structure has also been a combination of unicast queuing structure and multicast queuing structure. 
The widely used unicast queuing structure is the virtual output queuing (VOQ) since it can avoid the 
head-of-line (HoL) blocking problem, and 100% throughput could be achieved using schedulers such as 
iSLIP [1] and DRRM [2]. In a VOQ-based N × N switch, N queues are maintained at each input port; each 
queue contains packets having the same destined output. As for multicast traffic, a multicast packet can 
have more than one destination, known as its fan-out set. Consequently, multicast queuing structure can 

vary from just one multicast (first in first out) FIFO queue per input to 2 1N − queues per input, where N
is the number of output ports of the switch, and considerable amount of solutions based on the architecture 
have therefore been proposed such as [3-8]. The performance of such queuing structure was analyzed in 
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[9-11]. Depending on the above input queuing structure, integrated scheduling algorithms have been 
proposed. They were mainly proposed for the input queued (IQ) crossbar-fabric-based switching 
architecture because of its scalability, low hardware requirements, and its intrinsic multicast capabilities. 
Most of these algorithms were based on input VOQ for unicast traffic and one FIFO queue for multicast 
traffic, such as ESLIP [12] and others [13]. However, the HoL blocking problem of multicast traffic limits 
the throughput achievable by switches. Other algorithms [14] used VOQ for unicast traffic and a small 
number, k (1 2 1Nk< −� ), of FIFO queues for multicast traffic to alleviate the multicast HoL blocking. 
Algorithm in [15] used VOQ queuing structure for unicast and multicast traffic separately to deal with the 
HoL blocking. 

Compare to the main constraint of limited energy of sensors in designing wireless sensor networks 
protocols [16], with backbone networks, high-speed switches have very short time to perform scheduling as 
link speed grows dramatically, and as a result iterative design and high scheduling overhead with existing 
integrated scheduling algorithms become the bottleneck for integrated scheduler designs since scheduling 
overhead scales up very quickly as the link speed and switch size increase, and the need for simple and 
high performance switches which support unicast and multicast traffic simultaneously is urgent. For this 
reason, we propose a new non-iterative integrated scheduling algorithm named Unicast and Multicast Dual 
Round-Robin integrated algorithm (UMDRR) which performs with only one matching cycle by a 
sequential scheduling for unicast and multicast traffic in a time slot rather than traditional log(N) iteration 
times, and reduces the multicast scheduling overhead from O(kN) to O(N), which makes it implementable 
at high speeds. Simulation results show UMDRR achieves a good performance under various traffic 
patterns. 

The rest of the paper is structured as follows. In Section 2, we describe the system architecture and the 
proposed integrated scheduling algorithm with scheduling overhead analysis. In Section 3, we evaluate the 
performance of the proposed scheme by simulation. Finally, we conclude the paper in Section 4. 

 
2. System architecture and the algorithm 
 

The proposed integrated scheduling algorithm is targeted at N × N input-queued switches. We first 
describe the system architecture of the proposed algorithm and then elaborate on the details of the 
algorithm. 

 
2.1. System architecture 
 

The N × N switch system architecture of the proposed integrated scheduling algorithm is shown in 
Figure 1. We fix our attention on synchronous slotted switch architecture. The incoming variable-sized 
packets are segmented into fixed-sized packets before entering input queues and segments are put back 
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together before departing from output ports. Packets transmitted by the switching fabric are assumed have 
equal length. The fixed-sized packet is also called cell. In this paper, we consider only the fan-out splitting 
discipline that cells may be delivered to output ports over several cell times. The switch fabric is a 
bufferless crossbar with a speedup of one, i.e., at each time slot, each input can transmit no more than one 
cell and each output can receive no more than one cell. However, it is obviously possible that multiple 
copies of the same HOL multicast cell are forwarded to different output ports during the same time slot. 
Both unicast traffic scheduler and multicast traffic scheduler are provided and coordinated by an 
integration controller. They are distributed at each input and output port. Another critical component is the 
traffic and resource management module (not shown in Figure 1). It monitors the traffic composition in 
terms of the amount of unicast and multicast traffic and provides this information to the integration 
controller. 

Figure 1. Input-queued switch architecture for integrated scheduling 

 
As illustrated in Figure 1, two sets of queues are organized separately at each input port. For unicast 

traffic, VOQ technique is deployed and N VOQs are maintained at each input; for multicast traffic, a small 
number of FIFO queues are allocated at each input port. Unicast packets are assigned to the proper queues 
according to their destinations, while multicast flows are partitioned into the k queues according to a 
modulo multicast cells assignment described in [17]. 

We first define the terms that are used throughout the paper. Let λ be the average arrival rates, equal 
to the input load, µ be the output load, and the unicast and multicast output loads be denoted as µu and µm,
then the following relations hold: 

µ=µu+µm =λPu+λE[F]Pm (1) 
where Pu (Pm) represents the probability that an arrival packet is a unicast (multicast) cell, and E[F] denotes 



International Journal of  
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545 
Vol.2,No.4, 2012 DOI: 10.7321/jscse.v2.n4.2 

17 
 

the average number of destinations of multicast cells. The total length of unicast traffic queues and 
multicast traffic queues are denoted by Lu and Lm respectively, and then the total length of mixed traffic 
queues L is derived as 

1 1 1 1

, ,
0 0 0 0

[ ]
N N N k

u m
u m i j i j

i j i j
L L L L L E F

− − − −

= = = =
= + = +∑∑ ∑∑  (2) 

where ,
u
i jL ( ,

m
i jL ) represents the length of the jth unicast (multicast) queue allocated at input i.

2.2. Integrated scheduling algorithm 
 

By employing an existing unicast scheduling algorithm [2] and a new multicast scheduling algorithm, 
we propose a sequential integrated scheduling algorithm that supports unicast and multicast traffic 
efficiently. Unicast scheduling and multicast scheduling are coordinated together with a specific priority in 
a time slot. The scheduling procedure works as follows. 

Both unicast traffic scheduler and multicast traffic scheduler are distributed at each input and output 
port. Each input scheduler maintains three priority pointers: a unicast pointer, a multicast primary pointer 
and a multicast secondary pointer. Primary pointers are designed to provide fairness among k multicast 
queues at each input, while secondary pointers are used to alleviate the HoL blocking and thus guarantee 
high performance. Each output scheduler maintains two priority pointers: a unicast pointer and a multicast 
pointer. All output multicast pointers point to the same input, and increase by one at each multicast time 
slot. This pointer update rule [4] is fundamental to guarantee that the scheduler can run in a fully 
distributed way. We denote the input preferred by all output multicast pointers as primary input, and the 
others as secondary inputs. A detailed description of the integrated algorithm follows, including three 
phases: 

Phase 1: At the beginning of each time slot, determine the scheduling priority with the following 
probabilities:  

Pr(multicast slot) = Lm / L, Pr(unicast slot) = 1− Lm / L.
A time slot identified to schedule unicast (multicast) traffic first is called a unicast (multicast) slot. 

Phase 2: Serve the prioritized traffic. This process includes the following two steps: 
Step 1: Request. In a unicast slot, each input sends an output unicast request corresponding to the first 

nonempty VOQ in a fixed round-robin order, starting from the current position of the unicast pointer. The 
unicast pointer of the input scheduler is incremented to one location beyond the selected output if, and only 
if, the request is granted in step 2. In a multicast slot, the primary input (each secondary input) sends 
multicast requests to all destined output ports corresponding to the first nonempty multicast queue in a 
fixed round-robin order, starting from the current position of the multicast primary pointer (secondary 
pointer). The primary pointer (each secondary pointer) of the primary input (each secondary input) is 
incremented to one location beyond the selected queue.  
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Step 2: Grant. In a unicast slot, if an output receives one or more requests, it chooses the one that 
appears next in a fixed round-robin schedule starting from the current position of the unicast pointer. The 
output notifies each requesting input whether or not its request was granted. The unicast pointer of the 
output scheduler is incremented to one location beyond the granted input. In a multicast slot, if an output 
receives one or more requests, it chooses the one that appears next in a fixed round-robin schedule starting 
from the current position of the multicast pointer. The output notifies each requesting input whether or not 
its request was granted. The multicast pointer of the output scheduler is incremented by one.  

Phase 3: Serve the nonprioritized traffic with the remaining resources. This process includes the 
following two steps: 

Step 1: Request. In a unicast slot, each unmatched input sends multicast requests to all destined output 
ports corresponding to the first nonempty multicast queue in a fixed round-robin order, starting from the 
current position of the multicast secondary pointer. In a multicast slot, each unmatched input sends an 
output unicast request corresponding to the first nonempty VOQ in a fixed round-robin order, starting from 
the current position of the unicast pointer. 

Step 2: Grant. In a unicast (multicast) slot, if an unmatched output receives one or more requests, it 
chooses the one that appears next in a fixed round-robin schedule starting from the current position of the 
multicast (unicast) pointer. The output notifies each requesting input whether or not its request was granted. 
 
2.3. Scheduling overhead analysis 

The major problem with existing iterative scheduling algorithms is that the scheduling overhead scales 
up very quickly as the link speed and switch size increase, which limits the scalability in high-speed 
switches having very short time to perform scheduling. This study overcomes the limitations and proposes 
a new integrated scheduling algorithm with reduced communication overhead.  

We first define scheduling overhead as the information exchanged at an input port in one matching 
cycle. As we can see from Table 1, in contrast to existing three-phase (request-grant-accept) integrated 
scheduling algorithms with log(N) iteration times, UMDRR performs with only one matching cycle; 
moreover, it has one less operational step (request-grant), and less information exchange between inputs 
and outputs. Specifically, UMDRR reduces the unicast scheduling overhead from O(N) to O(logN) by 
selecting one of the N VOQs for requesting, and multicast scheduling overhead from O(kN) to O(N) by 

selecting one of the k multicast HoL cells for requesting, where k (1 2 1Nk< −� ) represents the number 
of multicast queues maintained at each input.  
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Table 1. Scheduling overhead comparisons 

Algorithms 
Conflict resolutions Control messages (bits) 

Convergence 
iteration 

times Input Output Request Grant Accept 

ESLIP round-robin round-robin 2N N log(N) log(N)
fSCIA max_service max_weight N+kN(2+logN) N log(N) log(N)

UMDRR round-robin round-robin log(N)+N 1+N - -

3. Performance evaluation and analysis 
 

In this section, we show some simulation results derived from OPNET Modeler [18]. To evaluate the 
performance of the proposed integrated scheduling algorithm, we consider several different traffic 
conditions and compare the algorithm with ESLIP [12] and fSCIA [14] for a 16×16 switch. The ESLIP 
algorithm is chosen for comparison because it is practical, and is being deployed on commercial switching 
products, while fSCIA using a number of queues for multicast traffic as well, and exhibits a good 
performance. The simulated switch is assumed to have sufficient buffers at the input. We consider the 
mixture of unicast and multicast traffic in this study, and algorithms perform with a single iteration for a 
fair comparison. 
 
3.1. Traffic model 
 

Two traffic scenarios are used to evaluate system performance. For Bernoulli (uncorrelated) arrival, in 
each time slot, the probability that a new packet arrives is independent of any other time slot; for Bursty 
(correlated) arrival, cells are generated by a two-state Markov process which has busy and idle states. The 
process stays in each state for a random number of timeslots following a geometrical distribution with 
expectancy of E[B] and E[I]. Bursty traffic is provided to each input with a mean burst size of 16 cells. It is 
assumed that the destination port of a unicast cell is generated according to a uniform and nonuniform 
distribution, while that the fan-out set of a multicast cell is chosen uniformly at random among all 
the 2 1N − possible fan-out sets. The nonuniform unicast traffic is defined by using an unbalanced 
probability, ω (0≤ω≤1). For input port i and output port j, the traffic load, µi,j , is followed by the following 
relation: 
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Note that when ω = 0, the load is uniform over all outputs and when ω = 1, the unicast traffic load is totally 
unbalanced. 
 
3.2. Performance under uniform traffic 
 

Figure 2 and Figure 3 show the average delays against the output load for ESLIP, fSCIA and UMDRR 
under uniform traffic. With given traffic composition (Pm=0.1), we can observe that as output load increase, 
UMDRR is very effective in reducing the average delay, and performs reasonably well. It has lower latency 
comparing to ESLIP and fSCIA with a single iteration. We also show the simulation results of ESLIP and 
fSCIA with log(N) iteration times for a reference. We can see that at the expense of high complexity, 
ESLIP and fSCIA with 4 iterations achieve lower cell delays, however, the difference is even not 
significant at high load for ESLIP. Note that the reason why ESLIP and fSCIA with one iteration perform 
not very well is that they experience an inefficiency matching where some of the grants can be wasted 
because of input contention, and as a result some outputs can be idle for the scheduling decision in the 
timeslot.  

Figure 2. Delay as a function of output load with uniform Bernoulli traffic. 

Figure 3. Delay as a function of output load with uniform Bursty traffic. 
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Figure 4 and Figure 5 illustrate the throughput as a function of multicast fraction, and compare the 
maximum achievable throughput of UMDRR with two other integrated algorithms for different iteration 
times under uniform traffic. It is shown that irrespective of the arrival traffic pattern, UMDRR always 
achieves higher throughput than ESLIP and fSCIA with a single iteration , and also exhibits better 
throughput performance than ESLIP with 4 iterations when the percentage of multicast traffic beyond 0.5, 
which demonstrates that UMDRR can allocate the switch resources to unicast and multicast traffic more 
equitably, and can alleviate the multicast HoL blocking more efficiently than ESLIP. On the other hand, 
owing to the multicast HoL blocking alleviation and high complexity (both high time complexity and high 
scheduling overhead), fSCIA with 4 iterations can achieve a set of maximal matches between input and 
output ports and therefore provides a good throughput performance. 

Figure 4. Throughput as a function of multicast fraction with uniform Bernoulli traffic. 

 

Figure 5. Throughput as a function of multicast fraction with uniform Bursty traffic. 
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3.3. Performance under nonuniform traffic 
 

Figure 6 and Figure 7 demonstrate the average delays as a function of output load for ESLIP, fSCIA 
and UMDRR under nonuniform traffic(ω = 0). With given traffic composition (Pm=0.1), we can see that 
the delay performance of the three schemes is affected by the nonuniform traffic severely as the output load 
grows, and UMDRR still has smaller cell delays than ESLIP and fSCIA with one iteration. 

Figure 6. Delay as a function of output load with nonuniform Bernoulli traffic. 

Figure 7. Delay as a function of output load with nonuniform Bursty traffic 

 

3.4. Performance improvement by increasing k
The performance of delay and throughput for the proposed integrated algorithm can be increased 

efficiently through increasing the number of multicast queues. It is of great importance that the multicast 
scheduling overhead of the proposed algorithm remains O(N) when k grows, which is different from the 
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other existing algorithms with O(kN).  
Figure 8 and Figure 9 present the improvement of delay and throughput performance introduced by 

increasing the number of multicast queues for Bernoulli traffic and Bursty traffic, respectively. For the 
given traffic composition(Pm=0.1), we can observe that with a novel update rule for multicast requesting 
pointers at each input, the delay and throughput of UMDRR improve efficiently as k increases. The 
intuition behind this is that as k increases, the update rule of the requesting pointer allows more new cells to 
participate in scheduling during the next time slot, and as a result reduces the output contention and 
consequently alleviates the HOL blocking problem. From Figure 9 we can see that the improvement of the 
throughput is not significant when the multicast traffic fraction is small, and as the proportion of multicast 
traffic grows, the improvement is obvious. We can also observe that a high throughput can be achieved 
when k grows to 8, which corresponds to the conclusion in [9] that a small number of multicast queues 
(less than 10) are enough to obtain a high switch performance. 

Figure 8. Delay as a function of output load with increasing k under uniform traffic 
4. Conclusion 

In this paper, we present a scalable, fully distributed, fair, and simple integrated scheduling algorithm 
that supports unicast and multicast traffic simultaneously. From a practical point of view, the proposed 
algorithm reduces the multicast scheduling overhead from traditional O(kN) to O(N) , whereas provides a 
good performance in terms of delay and throughput. Simulation results show that the algorithm is more 
suitable for large capacity, high-speed switches/routers that have very short time to perform scheduling 
under various traffic patterns. In addition, several issues are not discussed in this paper including the 
improvement of switching performance with pure unbalanced unicast traffic and the analytical analysis of 
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the proposed integrated scheduling algorithm, and it will be discussed in our further study. 
 

Figure 9. Throughput as a function of output load with increasing k under uniform traffic 
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