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Abstract. The topic of research in this paper is the determination of losses on a radial 
distribution feeder at a certain moment based on measurements of input complex power in the 
feeder and voltages in the farthest network node and power flow calculation. The presented 
method of DE used to find a virtual load of each node is based on the defined objective function. 
The value of the objective function using DE algorithm is obtained by calculation of power flow. 
The virtual load thus obtained is then used in the calculation of power flows on the basis of which 
total losses in a network are determined. The proposed method attempts to overcome the problems 
arising from the uncertainty of node loads in the network at some point in the evaluation of 
network losses. Evaluation of the proposed method was carried out by performing tests on the 
IEEE 123 node test feeder. 
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1. Introduction 
 

It was important for the distributors to know the total losses in the distribution networks. The issue of 
loss estimation has long been treated in the literature and there are many papers on this subject. The 
literature shows different methods of losses estimation in the distribution network. In [1] a method for 
losses estimation on the basis of knowing load of certain network components is shown. It is necessary to 
know peak and real power that goes through the component in this method. Often used are methods 
where losses are estimated with loss factor which depends on load factor. Examples of these methods can 
be found in [2] and [3]. Methods where explicit expressions are used for losses estimation are shown in 
[4], [5] and [6]. In these methods the entire calculation of power flow is not performed. The time of 
calculation is considerably diminished. In [7] a method based on power measurement injected in the 
network is shown, voltage on HV and MV sides of HV/MV transformers and current in main feeder. 
Models based on theory of fuzzy sets have been developed lately. In these methods losses are estimated 
on the basis of network total load by applying fuzzy regression. Analytic expression determining, with 
fuzzy numbers, dependence of loss on load is based on measured data for total load and total losses. 
These methods are shown in [8], [9] and [10]. Top-Down/Bottom-Up method for losses estimation is 
shown in [11]. Here first the larger group of distribution feeders is grouped (clustered) into smaller 
groups with similar feeders. According to method [12] the network is firstly separated into groups with 
similar feeders and in each group a representative feeder is determined. After a certain time all loads are 
measured on these feeders. Then on the basis of measured data the losses are calculated. The calculated 
losses are compared with the losses estimated with the existing methods. Losses on other feeders in the 
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group are estimated with the method that gives the best results comparing to losses obtained by 
measuring. Loss calculation in the network is performed by calculation of power flows. To do that it is 
necessary to know the network data: nominal voltage, lines data, network configuration and node loads. 
Regarding load, usually it is the easiest way to get the data on installed (nominal) load power. 

Exact loads in nodes at some point can exclusively be obtained by measuring. A larger number of 
consumers is usual in distribution networks. Because of that the measurement of all loads causes great 
financial and technical effort. Commonly the loads in distribution networks are estimated for the needs of 
different calculations. The simplest way is to multiply nominal loads of each node with ratio of total 
current and nominal power of the entire network. However, the loads of all nodes are not changing in the 
same ratio simultaneously. Because of that this way of load estimation often does not correspond to real 
network state. Other way is to estimate current node load with load curves. Load curves are attained from 
measured history for different consumer types. These curves can be measured on yearly (load per 
months), monthly (load per days) and daily (load per hours) basis. However, in this case it is not entirely 
safe that the observed load changes in time completely the same like the previously measured for some 
consumer type. This is clearly expressed in the consumers of household category. Also, these curves are 
mostly obtained by measuring the total power of the entire network, not each consumer separately. Due 
to this unreliability when determining node loads even the calculated losses can differ from the real ones. 

In this paper the intention was to overcome these problems by defining certain combinations of 
current loads in network nodes. This way the load estimation is performed with minimal number of 
measured data. An objective function which contains differences between measured and calculated data 
is defined, and the observed problem is solved with evolutionary algorithm. By solving the optimization 
problem a certain combinations of network loads are obtained. We called the node loads which are 
obtained in such a way virtual loads because they do not necessarily correspond to real node loads. We 
tried to prove that these virtual loads give approximately the same losses to the ones calculated for real 
loads by empirical way and simulation performances. 
 
2. Defining of the optimization problem 
 

The idea for the problem solution is based on the analysis of complex power balance and influence of 
node loads on losses and voltage in the network. Network node load can vary during the times from zero 
value to its nominal or peak value. The total network load is equal to the sum of all node loads in certain 
moment. For a certain total network load that is smaller than the peak load, a certain number of different 
node load combinations can exist. It can be concluded that different combinations of node power, which 
give approximately the same total power, in general case give different losses. The question emerges 
here: do two (or more) combinations which give approximately the same total power and total losses in 
the network exist (Figure 1)? If they exist then for each real loads combination can be written: 
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Where: Sin – complex power injected into the radial feeder, Sl – total complex losses of feeder, Sni –
complex power of load in the ith node, Sin

j – complex power injected into the radial feeder for the jth 
combination of loads, Sl

j – total complex losses of feeder for the jth combination of virtual loads, Sni
j –

complex power of load in the i-th node for the jth combination of loads (can be different from 
corresponding real load) and n – number of nodes with load. Index j in (1) marks some combination of 
virtual loads if there is more combinations of virtual loads for same injected power. 

Part in (1) on the left side of the sign ≈ represents the real total power, losses and load in the network. 
Part in (1) on the left side of the sign ≈ represents the sign balance for certain node loads combination 
which do not have to be the same as the real one. Sum elements in (1) are complex loads of nodes in the 
network. The assumption is that the loads are in the same nodes. It is necessary to point out that the sums 
on the right and left side of sign ≈ in (1) are approximately the same, but the corresponding elements of 
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every sum do not have to be equal. Different combinations of network node loads also give different 
voltage in network nodes. The idea is to set an optimization problem which contains known (measured) 
total network power and known (measured) voltage in the last network node. 

 

2.1. Objective function 
 

Objective function of optimization problem in the general shape is set as: 
( ) ( ) ( ) min,,,, →∆+∆=∆∆ nSVfnSSfnSVSf VinSin

rrr
(2) 

Figure 1. Preview of the idea 

 
Where nS

r
=[Sna1, Snb1, Snc1,…Snai, Snbi, Snci…Snan, Snbn, Sncn]T is vector of loads, combination of 

all complex phase loads in vector form, ∆Sin is a difference between measured and calculated injected 
complex powers and ∆V is a difference between measured and calculated voltages of the last network 
node. Part fS in (2) refers to the part of objective function which contains the difference of total powers in 
itself, and fV on part that contains difference of voltages in the last network node. Below are details of 
certain parts of objective function (2). Absolute value of differences between the measured and 
calculated (for virtual loads) injected active power is: 

( ) ( ){ }| |nSScSm=nS∆P kkk
rr

−Re (3) 
Where, Smk and Sck are total measured complex power injected into the kth phase of the feeder and 

total calculated complex power injected into the kth phase of the feeder for some combinations of virtual 
loads. 

Furthermore, for the absolute values of the difference between imaginary parts of the measured and 
calculated complex power of the k- th phase, the expression is: 
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( ) ( ){ }| |nSScSm=nS∆Q kkk
rr

−Im (4) 
Re and Im in (3) and (4) mark real i.e. imaginary part of complex powers. 
In (3) and (4), the calculated complex power (Sc) is obtained for virtual node loads which are formed 

during the performance of DE. The measured power in (3) and (4) is carried out for unknown real node 
loads. 

In order to determine the proper impact of the absolute difference between active and reactive injected 
power on the value of the objective function, it has been defined as: 

( ) ( )( ) ( )( ){ }∑
=

∆
cbak

QkPkinS DnS∆Q+DnS∆P=nSSf
,,

/exp/exp,
rrr

(5) 

Calculation of the difference of injected active and reactive power according to (3) and (4) gives 
results which, however, do not offer solutions of the same quality. According to (5), the scaling 
coefficients DP and DQ are introduced on the basis of which the behavior of the objective function adjusts 
to the values measured in the injected power. DP and DQ coefficients equalize the value of members in 
(5) which relate to active and reactive power. The following expressions are used to determine the 
coefficients DP and DQ:

NnQNnP Q=DP=D ⋅⋅ 0.01;0.01  (6) 
 
Where PNn and QNn are injected nominal real and reactive power. Coefficient 0.01 which multiplies 

the nominal active and reactive power (6) is introduced due to equalizing of numerical values of 
objective function values fV and fS. Also this coefficient enables that the changes (lowering or increasing) 
of value fV and fS caused by changing objective function variables are equalized. The value of this 
coefficient is changed by that and the reached conclusion is that for the stated function forms fS (5) and fV
(7) in general the 0.01 value fits the best. In (5)-(8) active and reactive power are expressed in kW and 
kvar. 

For fV of objective function the following expression is used: 
( ) ( )( ){ } minexp, →−⋅=∆ ∑

k
mkcknV VnSVVnSVf

rr
(7) 

In (7) the nominal phase voltage Vn is in [V], and calculated and measured voltages Vck and Vmk are in 
[p.u.]. 

Function forms fS (5) and fV (7) are determined experimentally by performing simulation for more 
different forms. The amount of node load in the network can vary from a minimum value (may be 0) to 
the peak or installed nominal load values. By taking this constraint into account, the optimization 
problem is solved as:
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As seen from (3), (4), (5), (7) and (8), the objective function variables are complex power of phase 
node loads in all network nodes. Value of global objective function minimum is 0. This value 
corresponds to real node loads. For objective function (8) with evolutionary algorithm a values of node 
loads (objective function variables) which give the smallest value of objective function are searched. In 
the end by calculation of power flows the losses in network are defined from node loads which are 
obtained in such a way. 
 
3. Finding node loads by differential evolution 
 

Differential Evolution (DE) belongs to a group of evolutionary algorithms and is often used to solve 
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optimization problems. The basic algorithm of Differential Evolution is simple and consists of the 
following steps [13]: 

Step 1 Create a population of Ni vectors in the starting generation. 
Step 2 For each vector in the population repeat steps 3 to 6. 
Step 3 Create a mutant vector. 
Step 4 Create a trial vector by combining the mutant vectors and target vector. 
Step 5 Check whether the value of the objective function for the trial vector is less than or equal to the 

value of the objective function of a vector in the current population. 
Step 6 Replace the existing vector with trial vector if the condition in step 5 is fulfilled. 
Step 7 Replace previous population of vectors with a new population obtained by performing steps 3 

to 6. 
Step 8 Repeat steps 2 to 7 until the criteria for stopping the algorithm is not fulfilled. 
Step 9 As a solution of the problem, print the vector with the smallest objective function value in the 

last generation. 
The following describes specific actions required for the application of Differential Evolution for the 

considered problem. 
 

3.1. Initial population 
 
Population in the evolutionary algorithms is a group of individuals from the problem solution space. 

The individual represents a group of values of objective function variables. The individual is usually 
mathematically shown in the form of vector or data series. The elements of individual vector are 
variables of objective function. For set optimization problem (8) the individual can be shown with the 
vector whose elements are complex phase load powers in nodes: 

[ ]Tmmmiii SncSnbSnaSncSnbSnaSncSnbSna=nS ,,,,,,,, 111 LL
r

(9) 
Where Sni is a complex load in ith node for a, b and c phases and m the number of nodes with the 

loads. Individual population can be mathematically shown in matrix shape as: 
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Where p is a number of individuals in population i.e. population size. 
If the influence of variable value on objective function is not known, usually the initial population is 

created by random selection of individuals from the solution space. In some cases, areas in solution space 
in which there could be a greater possibility of problem solution existence are known. In those cases the 
creation of initial population is performed by selection of individuals from those interesting areas. The 
losses in the distribution networks amount couple of percentages of the total network power. So the 
network load makes the majority of injected power in the network. On these grounds it can be concluded 
that in the observed optimization problem the interesting areas in solution space are those where the sum 
of all loads is close to the measured injected power. Because of that the individuals of initial population 
is created here in a way that the sum of all individual elements is equal to the power injected in the 
network. Due to diversity of genetic material in the population, the unit element values are selected 
randomly. It should be taken into account that the loads can move in limits from 0 to the nominal value. 
In the general case of nominal value of certain loads are not equal and can differ significantly. For the 
creation need of initial population individuals, with the condition that the sum of individual elements is 
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equal to the injected power, the following procedure is used here: 
Step 1: The nodes with loads are set in the series with random order selection. 
Step 2: The values of coefficient K ranging to R to 1 are set with step ∆K. R is the ratio of injected 

network power and nominal network load. The step ∆K is calculated as: 
)1/()1( −−=∆ KNRK (11) 

Where NK is the number of coefficient value K. The number of coefficient value K can be selected at 
will. The values of coefficient K are calculated as: 

1,,3,2,1,01 −=∆⋅−= Ki NnforKnK L (12) 

Step 3: The first load in sequence from Step 1 is set on nominal value multiplied with coefficient K. 
Step 4: For other loads in sequence Step 3 is repeated until the sum of all previously determined loads 

is less then injected power. 
Step 5: If the sum of all previously determined loads is higher then injected power, then the last 

determined load is equal to difference between injected power and sum of all previously determined 
loads. 

Step 6: Steps 3-5 are repeated for all values of coefficient K set in step 2.  
By making initial population with this procedure a sufficient genetic diversity in the initial population 

is ensured. Also, with this the search of solution space in future generations DE is focused on interesting 
areas. If power injected into network is greater than nominal load of network this procedure will not be 
performed. The network is close to its nominal state, in this case. The number of individuals created with 
the described procedure is equal to the number of coefficient value K (NK in Step 2). By implementing 
the described procedure N times a size of the population is obtained which is equal to product N and NK.
In Table 1 an example of described procedure implementation with numerical values for network 
example with 4 loads and NK = 5 is shown. 

 

Table 1. An example of initial population generating 

Nominal node loads L1n L2n L3n L4n ∑L
50 30 70 100 250

Random loads order L2, L3, L1, L4
Injected network power Pin 100

Ratio R=Pin/∑L 0.4
Number of coefficients K, NK 5
Step of K, ∆K=(1-R)/(NK-1) 0.15

Generating of initial 
population 

K
values

Load combinations
∑L Initial population with five 

individuals [L1 L2 L3 L4]TL2 L3 L1 L4
0.4 12 28 20 40 100 [20 12 28 40]T

0.55 16.5 38.5 27.5 17.5 100 [27.5 16.5 38.5 17.5]T

0.7 21 49 30 0 100 [30 21 49 0]T

0.85 25.5 59.5 15 0 100 [15 25.5 59.9 0]T

1 30 70 0 0 100 [0 30 70 0]T

3.2. Mutant and trial vectors 
 

The mutant vector is made by combination of individuals (vectors) from the current population. There 
are several ways in which the mutant vectors are generated in DE. In the paper, the following expression 
for the mutant vector has been used [13]: 



International Journal of  
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545 
Vol.2,No.4, 2012 DOI: 10.7321/jscse.v2.n4.1

7

( ) ( )
r5r4r3r2r1

SSF+SSF+S=mS r5
g

r4
g

r3
g

r2
g

r1
g

j
g

≠≠≠≠

−⋅−⋅
rrrrrr

(13) 

The Sg
r1 is the base vector and Sg

r2, Sg
r3, Sg

r4 and Sg
r5 are difference vectors. The base vector can be 

chosen in different ways. For example, it is the current best population vector or linear combination of 
various vectors or a randomly chosen population vector. The base vector is a randomly chosen 
population vector, in the presented methode. Difference vectors are randomly selected once per base 
vector. The F is DE parameter, called mutation factor, which controls the amplification of the difference 
between individuals and it is usually taken from the range [0.1, 1] [13]. The number of mutant vectors is 
equal to the number of individuals in the population, i.e. equal to the population size. 

Elements of the trial vectors in DE are defined as [13]: 
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Where Stj
g,i is the ith element of the jth trial vector for the current population. The Sj

g is the jth 
individual (usually caled the target vector) from the current population and Sj

g,i is the ith element of the 
Sj

g. The Cr is DE parameter, called crossover rate in the range [0, 1] [13]. The random number randi is 
evaluated for each element of the mutant vector. The trial vector is made for each mutant vector and 
population individual. According (14), the trial vector element is equal to the corresponding mutant 
vector elemen if randi ≤ Cr. Otherwise it is equal to the corresponding element of the current population 
vector. The mutation and trial vectors performed mutation and recombination of individual elements 
(genes). For each trial vector, the objective function value is calculated. For mutant vectors, objective 
function values are not calculated. 
 
3.3. Selection and creation of the population in the next generation 

 
The new population in DE is created by comparing objective function values of the trial vector and 

corresponding current population individual (target vector). Selection in the Differential Evolution is 
very simple and is done according to the following criterion [13]: 
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Where j
gS 1+
r

, j
gtS

r
and j

gS
r

are the individual will be inserted into the new generation, the trial vector 

and the current population individual. The j
gS
r

is called target vector and it is the same vector in (14) and 
(15). According (15), the trial vector competes against the target vector. The vector with the lowest 
objective value survives into the next generation. The individual (target vector) form current generation 
survives into the next generation, if mutation and recombination did not improve its quality. 

The elements of all vectors in (13), (14) and (15) are virtual node loads. 
 
4. The proposed method and experimental verification of thesis 
 
4.1. Preview of the proposed method 

 
Figure 2 shows the flow chart of the method. In order to consider the most general case of power 

flow calculation in an asymmetric network, the method described in [14] is used for power flow 
calculation. 
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Figure 2. Flow chart of the proposed method (2a) and DE algorithm (2b) 

It needs to be emphasized at this point that during the performance of DE, the power flow is calculated 
for every individual in the population. Power flow calculation determines the injected power, as well as 
the load of the farthest node required for calculation of the fitness function. 

4.2. Description of the calculation procedure 
 
In order to confirm the validity of the thesis presented in Part IV of this paper, further work is done 

with the DE algorithm described in Part V. 
The process of performing calculations required for verification of the thesis is performed in the 

following steps: 
Step 1 For a given combination of node loads, calculations of power flow are performed. 



International Journal of  
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545 
Vol.2,No.4, 2012 DOI: 10.7321/jscse.v2.n4.1

9

Step 2 Based on the calculation from Step 1, the total complex power injected into the feeder, total 
active losses and voltages on the feeder are determined. 

Step 3 For the known injected power at the beginning of the feeder and known voltages of the farthest 
node from Step 2, virtual load combinations, which give approximately the same injected complex power 
at the beginning of the feeder and voltages in the farthest node are determined by DE. 

Step 4 A comparison of the total power injected in the feeder, the total power of loads and the total 
losses on the feeder is performed for the given loads from Step 1 and virtual loads obtained in Step 3. 

When performing the DE algorithm, the following parameters are used: the number of vectors in the 
population Ni = 50, number of generations g = 30, constant of mutation F = 0.5 and coefficient of 
recombination Cr = 0.8. According to [13], recommended values of parameters F and Cr are in interval 
of F∈[0. 5, 1.0] and Cr∈[0.8, 1.0]. 

The algorithms of the proposed method and DE shown in Fig.2, as well as power flow calculation 
according to [14] have been programmed in MATLAB 7.9.0. 
 
4.3. Comment on the Calculation Results 

 
The IEEE 123 node test feeder has been used as an example of a radial distribution feeder. Data for 

these networks are described in [15] and are available online [16]. The test results of the proposed 
method conducted on the IEEE 123 bus feeder are shown at the end of the paper (6. Appendix ). 

For the purpose of carrying out the procedure presented in part 5.2., first several different node load 
combinations (Table 2, 6. Appendix) labeled as LC1-LC7 have been generated. The columns in Table 2 
labeled as LC1-LC7 contain loads in which a specific percentage of the rated load is stated for each row 
of the table. These load combinations are generated by choosing the specific percentage of rated load for 
LC1, LC2, LC5-LC7. For LC3 and LC4 load combinations, the percentage of rated load is randomly 
determined within the specified range of the rated load. Loads generated in this way have been taken as 
real loads at some moment in the network. Power flow calculations have been performed for these loads. 
Moreover, total losses taken as real losses in the network have been calculated. Despite the total losses, 
real injected power and real voltage of the farthest node have been calculated, and have been used as 
input data. 

The results obtained by the proposed method, as well as the results of scaled loads of a single phase 
using the ratio of real injected power and rated power of a single phase are shown in Table 3 (6. 
Appendix). During loss determination, loads scaled by the same percentage of rated power exhibit lack of 
precision (from 0.62% for LC3 to 24% for LC4) for different load combinations. Errors of loss 
estimation can account for 20 % (24 % for LC4). The reason for this lies in the fact that only injected 
power is taken into account. Since different load combinations can give approximately the same injected 
power, it is obvious why such great errors occur. This is particularly visible in the cases of LC2, LC3 and 
LC4 which all have a similar amount of total injected power in the network. Scaling of all loads using the 
same percentage of rated power for all three cases yields approximately the same losses. This problem 
may occur in all methods which only take input power into consideration. 

The highest average error obtained by the proposed method is less than 6.5%, which makes it over 14 
times (for LC2) more accurate than loss estimation carried out by load scaling. The estimated losses, as 
well as voltages of the farthest node are close to real values for all presented load combinations. 

Simulations for the test feeder have been performed in MATLAB 7.9.0. software. Simulations have 
been carried out using HP 6830s s Intel Core 2 Duo CPU P8400 2.26 GHz Memory (RAM) 4 GB. 

Simulation time for the tested IEEE 123 network was 174 s. The main reason for such a long 
simulation time is the necessity to calculate the power flow for each individual, which, in our case, are 50 
individuals x 30 generations = 1500 power flow calculations. Of course, in case of a smaller network the 
simulation time reduces. Furthermore, the calculation time can be reduced by using a faster computer and 
the possibility of parallel performance of the evolution algorithm in MATLAB software. 
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5. Conclusion 
 
This paper describes a procedure for estimation of total losses on a radial feeder of distribution 

networks using DE and power flow calculation. In this process, DE has been used by means of which 
certain combinations of virtual loads were found for the presented objective function. The objective 
function is defined on the basis of known injected complex power into the feeder and voltages in the 
farthest network node. 

The proposed method has certain advantages over existing methods, i.e. only measurements of total 
complex power injected into the radial feeder and voltages in the farthest node are needed. Moreover, 
knowledge of load curves or statistical data considering load is not required. This reduces the impact of 
errors in the evaluation of losses due to load uncertainty. In addition, it is not necessary to model the load 
on more levels because the virtual amount of load in each node is determined using DE for the moment 
of measuring the injected power. Also, it is not necessary to perform the measurement and analysis of the 
dependence of power losses. Furthermore, the advantage of the proposed method is that the total complex 
power injected into the radial feeder and voltages of the farthest network node at a given time is in use. 
This allows the application of methods in almost real time compared to the moment of measuring the 
injected power. Time discrepancy occurs because of the time needed to calculate power flows in DE 
iterations. 

Shortcoming of the proposed method stems from the need to know the parameters of all network 
elements and network configurations at the time of observation. In practice, problems may occur if it 
does not have data on the network or these data are unreliable. Also, preparation and input of all network 
elements require a lot of work. Since the DE is an iterative procedure and the power flow calculation is 
performed iteratively, problems in the duration of calculation on the computer can occur. These 
shortcomings may be particularly displayed in the case of large distribution networks. Therefore, the 
distribution network size (number of nodes, lines, loads) can be a limitation for the application of the 
proposed method. In addition to the long calculation time, problems may arise with quality of solutions. 
The number of loads is greater in larger networks. Since the loads are variables of the objective function, 
an individual (vector) in DE has more elements. Larger number (over a hundred in large distribution 
networks) of variables requires greater population and number of generations in DE and decreases quality 
of the solution. 

The size and the configuration complexity of distribution networks for which the proposed method is 
applicable will be the subject of future work. Also, future research will be directed to determining the 
minimum required number of measurement data in larger networks. Tests with hybrid methods 
(heuristic-evolutionary, fuzzy-evolutionary, and others) will be included in future work. The application 
of hybrid method should be reduced the calculation time and improve solution quality. 

Apart from the stated, the proposed method has shown that the use of the objective function for 
calculating losses (12) cannot result in only one load combination with approximately equal injected 
power and various losses. Therefore, methods which provide universal solutions for losses solely based 
on the power at the beginning of feeder cannot always result in reliable loss estimation. This is why a 
new variable was introduced, i.e. the amount of voltage at the farthest network node. 
 
6. Appendix 
 

The tested network is IEEE 123 node test feeder [16]. Tested load combinations are shown in Table 
2. Results for the losses obtained for the proposed method and scaled loads are shown in Table 3. The 
farthest three-phase node is node 95. 
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Table 2. Tested load combinations for IEEE 123 node test feeder 

IEEE 123 node 
feeder 

Load combination 
LC 1 LC 2 LC 3 LC 4 LC 5 LC 6 LC 7

X
%

of
no

m
in

al
lo

ad

10 % 

in
no

de

33, 38, 39, 51 

1-47, 49, 51, 
53, 56, 59, 74, 
79, 82, 85, 87, 
90, 94, 96, 99, 
102, 104, 107, 

111, 113

- - - - -

20 % 

1, 5, 6, 9, 11, 12, 
17, 24, 29-31, 34, 
35, 41, 45, 47, 48, 
50, 52, 55, 58, 60-
63, 66, 70, 74, 77, 

79, 82, 86, 100, 
102-104 

- - - 5, 79, 82, 107, 
111, 114 - -

30 % 

2, 7, 10, 16, 19, 
22, 28, 32, 37, 42, 
46, 49, 53, 56, 64, 
68, 69, 71, 80, 83, 

85, 87, 90, 99

- - -

10, 55, 70, 73, 
75, 83, 86, 88, 

94, 98, 104, 109, 
112 

1, 2, 6-9, 24, 28, 
38-41, 48, 50, 
64, 100, 102 

-

40 % 4, 43, 59, 73, 75, 
76, 84, 88 - - -

62, 64, 74, 84, 
90, 95, 100, 103, 

113

5, 11, 17, 34, 58, 
66 -

50 % 65, 80 - - - 20, 42, 63, 65, 
66, 96, 102, 106

4, 12, 19-22, 29, 
33, 43, 47, 49, 

111, 112 
-

60 % - - - - 33, 50, 60, 68 76 - 

70 % - - - - 11–17 - 1-28, 
76 

80 % 98 - - - 29, 41, 53 73, 86, 96, 106, 
107 29-46

90 % - - - - 19, 28, 35-39, 
52, 76 

16, 30, 60, 62, 
82, 84, 87, 90, 

95, 103

51-75, 
77-95

100 % 
92, 94, 95, 96, 
106, 107, 109, 

111, 114 

48, 50, 52, 55, 
58, 60-73, 75-
77, 80, 83, 84, 
86, 88, 92, 95, 
98, 100, 103, 

106, 109, 112, 
114 

- -

1-4, 6-9, 22, 24, 
30-32, 34, 43-49, 

56-59, 69, 71, 
77, 80, 85, 87, 

92 

10, 31, 32, 35, 
37, 42, 45, 46, 

51-56, 59, 63, 65

47-50, 
96-
114 

Se
le

ct
ed

ra
nd

om
ly

in
ra

ng
e

X
–

Y
%

of
no

m
in

al
lo

ad

10-20 % - - - 1–50 - - - 
10-30 % - - 51–114 - - - -
20-50 % - - - 73–79 - - -

80-100 
% - - 1–50 51–71, 

80–114 - - -
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Table 3. Results for IEEE 123 node test feeder 

IEEE 123 node feeder Load combination
LC 1 LC 2 LC 3 LC 4 LC 5 LC 6 LC 7 

R
ea

ld
at

a

Injected P & 
Q

Phase a P[kW] 546.60 722.76 762.67 767.28 987.79 1104.69 1239.40
Q[kvar] 11.17 143.12 126.32 145.10 268.91 349.39 433.81

Phase b P[kW] 330.70 460.39 410.45 500.67 669.98 629.41 847.18
Q[kvar] -77.22 26.85 -22.10 21.07 163.70 117.02 258.15

Phase c P[kW] 349.35 679.40 619.21 550.00 832.34 785.19 1018.02
Q[kvar] -105.79 98.91 53.66 5.29 187.22 146.82 298.88

Voltage in 
node 95 [p.u.]

Phase a 1.07833 1.07391 1.09189 1.06216 1.07447 1.04521 1.04659
Phase b 1.05779 1.04744 1.06355 1.04473 1.03924 1.04454 1.03156
Phase c 1.08228 1.05106 1.07615 1.06523 1.06204 1.05441 1.04684

Losses P [kW] 18.05 34.34 26.00 34.41 41.63 53.36 71.49

R
es

ul
ts

fo
rs

ca
le

d
lo

ad
s

scl 
Phase a 0.373 0.494 0.521 0.524 0.675 0.755 0.847 
Phase b 0.346 0.478 0.426 0.520 0.695 0.653 0.879
Phase c 0.293 0.569 0.519 0.461 0.698 0.658 0.853 

Injected P & 
Q

Phase a P[kW] 543.33 730.05 766.90 769.27 985.26 1097.30 1246.31
Q[kvar] -5.17 118.21 136.36 132.17 272.26 337.47 436.81

Phase b P[kW] 342.48 464.33 418.44 504.47 675.63 633.53 847.82
Q[kvar] -68.76 8.87 -14.41 35.24 144.90 127.72 261.59

Phase c P[kW] 350.32 678.83 618.59 553.61 836.33 788.51 1015.38
Q[kvar] -99.88 85.89 49.02 17.85 184.50 152.79 294.65

Voltage in 
node 95 [p.u.]

Phase a 1.0888 1.07836 1.07836 1.07546 1.06489 1.05487 1.04746
Phase b 1.05735 1.05597 1.05597 1.04892 1.03873 1.04660 1.03059
Phase c 1.08444 1.06546 1.06546 1.07381 1.05722 1.05892 1.04852

Losses [kW] 15.72 27.14 26.16 26.15 44.87 47.37 69.51 

Error [kW] -2.33 -7.20 0.16 -8.26 3.24 -5.99 -1.98
[%] -12.91 -20.96 0.62 -24.00 7.78 -11.22 -2.77 

R
es

ul
ts

fo
rt

he
pr

op
os

ed
m

et
ho

d

Losses – best [kW] 17.88 34.33 26.06 33.50 42.62 53.10 71.06 
Losses – worst [kW] 18.62 35.87 25.33 31.84 43.78 51.02 68.17 

Losses -
average [kW] 17.75 34.70 25.88 32.50 43.00 51.54 69.50 

Min |error| [kW] -0.17 -0.01 0.06 -0.91 0.99 -0.26 -0.43 
[%] -0.94 -0.03 0.23 -2.64 2.38 -0.49 -0.60

Average |error| [kW] -0.30 0.36 -0.12 -1.91 1.37 -1.82 -1.99 
[%] -1.66 1.05 -0.46 -5.55 3.29 -3.41 -2.78

Max |error| [kW] 0.57 1.53 -0.67 -2.57 2.15 -2.34 -3.32 
[%] 3.16 4.46 -2.58 -7.47 5.16 -4.39 -4.64

Injected P & 
Q for best 

results 

Phase a P[kW] 515.40 695.92 774.13 727.41 990.32 1103.02 1229.58
Q[kvar] -10.14 119.32 126.66 143.27 249.87 363.78 434.18

Phase b P[kW] 326.82 467.84 422.11 495.17 692.12 639.98 823.78
Q[kvar] -47.19 14.82 -22.25 26.89 158.32 124.85 260.58

Phase c P[kW] 352.27 670.09 617.16 595.23 841.23 814.61 1015.81
Q[kvar] -119.90 84.60 46.95 34.87 189.61 161.17 283.12

Voltage in 
node 95 for 
best result 

[p.u.]

Phase a 1.07823 1.07355 1.09094 1.06363 1.07351 1.04527 1.04614
Phase b 1.06353 1.04223 1.06438 1.04027 1.03954 1.04431 1.03504

Phase c 1.07830 1.05197 1.07542 1.06323 1.06213 1.05514 1.04226
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