
International Journal of
Soft Computing And Software Engineering (JSCSE)
ISSN: 2251-7545
Vol.2,No.2, 2012 DOI: 10.7321/jscse.v2.n2.1

1

Empirical Study of the Inertia Weight Particle Swarm Optimization
with Constraint Factor

*1YAN Chun-man, 2GUO Bao-long, 3WU Xian-xiang

1,2,3 Institute of Intelligent Control and Image Engineering, Xidian University, China,
yancha02@163.com, blguo@xidian.edu.cn, wuxianxiang@163.com

*1 College of Physics and Electronic Engineering, Northwest Normal University, China,
 *1 yancm@mail.xidian.edu.cn

Abstract. For improving the performance of the Particle Swarm Optimization (PSO), two major
strategies are used, one is the parameter modifying method, and the other is the population
diversity method. For these two methods, the first one obtains the balance between the local search
ability and the global search ability of the PSO by using the parameter adjusting and the
parameter adding or parameter reducing, in that it has less effect on the algorithm complexity and
has attracted a great of attentions. One of the well-known improved PSO algorithms of the
parameter modifying method is inertia weight PSO, by introducing the inertia weight, the
performance of the original PSO is improved greatly. Experimentally, we find that the
performance of the algorithm can be improved more when adding a constraint factor to the inertia
weight. In this paper, we empirically study the effects of the constraint factor on the performance
of the inertia weight PSO. Based on the experimental results, we obtain the optimal selection of the
constraint factor and extend the ability of the inertia weight PSO.

Keywords: Swarm Intelligence, Particle Swarm Optimization (PSO), Inertia weight

1. Introduction

The Particle Swarm Optimization (PSO) is an agent based search algorithm, which is first proposed by
Kennedy et al [1]. The algorithm is motivated by the group organism behavior such as bee swarm, fish
school, and the bird flock. The basic principle of PSO is to find the optimal solution through the
cooperation and competition among particles. For the algorithm, the solution of the problem is treated as
a volume-less particle with a special velocity in the search space. Through sharing the information with
the individuals and companions, the particle dynamically adjusts its velocity and position and flies to an
optimal orientation, and then makes the population evolve to an optimal solution through an iterative
process.

Compared with evolutionary computation, the PSO is a more efficient parallel search algorithm.
Because of the quick convergence speed and the fewer parameter settings, in the recent decade, the PSO
has achieved a quick development, and a variety of proposals aiming at improving the performance of it
had also been presented in many literatures. In generally, there are two main strategies for the
improvements: (1) the parameter modifying methods, which revising the parameters of the original PSO
to obtain the balance between the local and global search ability while making less effect on the
algorithm complexity, these algorithms include the inertia weight PSO [2, 3], the constriction PSO [4],
the self-organization PSO [5], etc.; (2) population diversity methods, for avoiding the premature
convergence caused by the loss of the population diversity, these methods borrow the ideas from the
natural selection and the social behavior to improve the performance of the algorithm, the family of them
include different topology PSO [6,7,8], social division PSO [9], cooperative PSO [10,11], ecological
selection PSO [12], etc.
 A more efficient optimization algorithm must obtain a better balance between the local and global
search ability, which means that the algorithm must has the ability to maintain a better local exploitation

International Journal of
Soft Computing And Software Engineering (JSCSE)
ISSN: 2251-7545
Vol.2,No.2, 2012 DOI: 10.7321/jscse.v2.n2.1

2

and global exploration ability. Exploration means that the particle departs from a solution and is able to
find other promising candidates; while exploitation means that the particle is capable of going along the
old path to obtain more optimal candidates. According to the “No free lunch theory” of optimization, the
performance improvement of the algorithm is always not “free”. The performance improvement of the
algorithm must rely on much more additional computation and information, which may lead to the
increase of the algorithm complexity. In other words, the increase of the locale search ability always
means to the decrease of the global search ability, and vice versa. Compared with the population
diversity methods, the parameter modifying methods develop the performance by revising the parameters
of the original PSO, in that it has less effect on the algorithm complexity and has attracted a great of
attentions.

In [2], Shi and Eberhart introduced the inertia weight to the velocity update equation of the original
PSO. The present of the inertia weight increases the convergence speed greatly, and obtains a better
balance between exploitation and exploration of the solution space, while having little increase of the
algorithm complexity. Therefore, it is valuable to make deeper study on it. We find that, when adding a
suitable constraint factor to the inertia weight, the algorithm appears to be more efficient. To validate the
situation, in this paper, we empirically study the phenomena. Four different benchmark functions are
selected as testing functions, and the convergence speed, the search accuracy, and the proportion of
optimization successes are compared under different constraint factor values. Through the experimental
results, we obtain the selection evidence for an optimal constraint factor, which is able to make the
algorithm do better than the original inertia weight PSO.

2. PSO algorithm and its improvement

The PSO algorithm can be described as follows: in the D-dimensional search space, there are n
particles forming a population { }1 2, , , D= LX x x x , each particle has a D-dimensional position vector ix
and a D-dimensional velocity vector iv . The vector ix represents a promising solution of the
optimization problem, and the velocity affects the convergence speed of the algorithm.

 The velocity vector and the position vector of the i-th particle can be described as
()1 2, ,... T

i i i iDv v v=v and ()1 2, , , T
i i i iDx x x= Lx , respectively. Through the search procedure in the D-

dimensional space, the particle “remembers” its own local best position ()1 2, ,... T
i i i iDp p p=p . By

comparing among the companions’ information, the particle gets the global best

position ()1 2, ,...
T

g g g gDp p p=p . At each generation, each particle updates the velocity by “following up”

two experience values (ip and gp) and its own velocity inertia, then updates its position, and “flies” to a
promising position. Because of the convergence speed, Shi et al. [2] modified the velocity update
equation by introducing the inertia weight w to the original PSO, and the improved PSO are
manipulated according the following equation:

() ()1 1 2 2(1) () () () () ()i i i i i i g it t c r t t c r t t+ = + − + −v v p x p x (1)

(1) () (1)i i it t t+ = + +x x v (2)
where t represents the index of iteration, i indexes a particle, 1, 2,...,i m= , and m represents the
population size. 1 ()ir ⋅ and 2 ()ir ⋅ are two random functions in range [0, 1] . In addition, 1c and 2c
are two positive constants, which can be looked as the personal cognitive factor and the social
cognitive factor, respectively. This improved PSO is called the Standard Particle Swarm
Optimization (SPSO), and notated as Inertia Weight PSO (IWPSO) in our paper.
 By introducing the inertia weight, the performance of the original PSO has been significantly
improved. By linearly decreasing the inertia weight from a relatively large value to a small value
through the course of the PSO run [3], the PSO tends to have more global search ability at the

International Journal of
Soft Computing And Software Engineering (JSCSE)
ISSN: 2251-7545
Vol.2,No.2, 2012 DOI: 10.7321/jscse.v2.n2.1

3

beginning of the run while having more local search ability near the end of the run. The inertia
weight update equation is described as Eq. (3):

()
max

start start end
tw w w w

T
= − − (3)

where t represents the index of iteration, startw and endw are the beginning value and the end value
of the inertia weight, respectively, and maxT is the maximum iteration times.

Through deeper experiments, we find that, when adding a suitable constraint factor f to the
inertia weight updating equation such that:

()
max

1
start start end

tw w w w
f T

= − ⋅ − (4)

By Eq. (4), the algorithm appears to be more efficient. In the follows of this paper, we will empirically
study the effects of the constraint factor f on the performance of the IWPSO.

3. Experimental settings

For comparison, four different benchmark functions, Sphere, Rosenbrock, Griewank and Rastrigrin,
are used as testing functions. Their graphs are shown in Fig. 1, where (a) and (b) are the graph of
function Sphere and Rosenbrock respectively, while (c) and (d) are the local graph of function Griewank
and Rastrigrin respectively. For all these functions, the global optimal value is *() 0f x = . Among them,
Sphere and Rosenbrock are single modal functions, they only have global optimal value in the search
space and are used for testing the global convergence performance of an algorithm. While Griewank and
Rastrigrin are multi-modal functions, they have a number of local optimal values, which are hard for
optimization problem, and are used for testing the local exploitation ability and the global exploration
ability. Table 1 shows the parameter settings for these testing functions, including dimension, search
range, and the global error.

(a) (b)

International Journal of
Soft Computing And Software Engineering (JSCSE)
ISSN: 2251-7545
Vol.2,No.2, 2012 DOI: 10.7321/jscse.v2.n2.1

4

(c) (d)
 Figure 1. Graph of four benchmark functions (D=2)

 Following the suggestion in [3] and for the purpose of comparison, the method used in [11] is adopted
here for population initialization, and the other parameters needed in the experiments are set as follows:
the maximum number of generations is set as 1000; the dimension of each particle is 30; the population
size is 40; the linearly decreasing inertia weight is used with 0.9startw = and 0.4endw = ; both 1c and

2c are set as 2.05; the maximum velocity maxv and the maximum position maxx are set to be equal, their
value for each function are listed in Table 2.

Table 1. Parameter settings for the benchmark function

Function Function Form Dim. Search
Space

Global
Error

Sphere 2
1

1

()
n

i
i

f x x
=

=∑ 30 []30100,100−
210−

Rosenbrock
1

2 2 2
2 1

1

() (100() (1))
n

i i i
i

f x x x x
−

+
=

= − + −∑ 30 []3030,30− 100

Griewank 2
3

1 1

1() cos 1
4000

nn
i

i
i i

x
f x x

i= =

 = − + 
 

∑ ∏ 30 []30600,600− 0.05

Rastrigrin 2
4

1

() (10cos(2) 10)
D

i i
i

f x x xπ
=

= − +∑ 30 []305.12,5.12− 100

Table 2. maxv and maxx settings for each testing function

Function maxv = maxx
f1 100
f2 100
f3 10
f4 600

International Journal of
Soft Computing And Software Engineering (JSCSE)
ISSN: 2251-7545
Vol.2,No.2, 2012 DOI: 10.7321/jscse.v2.n2.1

5

4. Experimental results and analysis

In this section, the effects of the constraint factor f on the performance of the inertia weight PSO
(IWPSO) is investigated through empirical study, different values of the constraint factor are selected
and three measures indices, convergence speed, search accuracy, and proportion of successes, are used to
evaluate the optimization.
 The convergence speed can be reflected by the iteration times to obtain optima. An algorithm would be
thought to be not convergent if it dose not obtain the optima after a fixed number of search runs. The
convergence speed can also be depicted by the convergence curve obviously, and a large gradient of the
curve means a quick convergence speed. Fig. 2 depicts the average convergence curves with different
constraints factor f for the four benchmark functions, in which, (a), (b), (c), and (d) are the curves for
function Sphere, Rosenbrock, Rastrigrin and Griewank, respectively. Where the horizontal coordinate is
the number of the iterations, and the vertical coordinate is the logarithm of the function values (fitness
function values).

As shown in Fig. 2, for all testing functions, when 1f = , the convergence speed is the lowest, and
when 0.05f = , the convergence speed is the fastest. While f decreasing from 1 to 0.05, the convergence
speed increases, further decrease in f value beyond 0.05, the convergence speed increases not any more.
 Table 3 lists the mean best fitness, which reflects the search accuracy under different constraint factor
f. Search accuracy reflects the best search result attained after running a fixed number of function
evaluations, and can also be represented by the average optimization error. For a testing function ()f x ,
describe the optimization error as Eq. (5):

min
() ()E f f= − *x x (5)

where *()f x is the given optimal value of the function. As described in Section 3, for all benchmark
functions, *() 0f x = , then the optimization error E is equal to the fitness function value, thus the search
accuracy can be represented by the average global optima of the total search runs.

(a) (b)

International Journal of
Soft Computing And Software Engineering (JSCSE)
ISSN: 2251-7545
Vol.2,No.2, 2012 DOI: 10.7321/jscse.v2.n2.1

6

(c) (d)
 Figure 2. Convergence curves under different constraint factor

Table 3. Mean best fitness under different f
Function f=1 f=0.5 f=0.1 f=0.05 f=0.01 f=0.005

Sphere 2.1838 0.0001 0.0000 0.0000 0.0000 0.0003
Rosenbrock 2386.5743 199.4966 129.0602 119.1987 102.5629 173.839
Griewank 67.1830 47.5886 46.5106 44.4015 43.9865 43.0154
Rastrigrin 0.8765 0.01634 0.0139 0.0136 0.0151 0.01480

As seen in Table 3, for function Rastrigrin, when 0.05f = , the best fitness can be obtained. For Sphere
and Rosenbrock, when 0.01f = , the best fitness comes out, and for Griewank, when 0.005f = , the best
fitness is obtained. Among all these testing functions, function Sphere is possessed of better search
accuracy.

The proportion of optimization successes over 200 runs are listed in Table 4, which shows the
percentage of times that the algorithm was able to reach the globally optimal region. For the
optimization, while the fitness is less equal the global error, it is looked as optimization success. This
measure reveals the expected probability of the algorithm reaching the criteria after a certain runs. If the
probability is very high, it means that the algorithm is consistently capable of discovering the solution.

Table 4. Proportion of optimization successes (%)
Function f=1 f=0.5 f=0.1 f=0.05 f=0.01 f=0.005

Sphere 0 100 100 100 100 100
Rosenbrock 0 51.5 70 76 68.5 52
Griewank 95 100 100 100 100 100
Rastrigrin 0 93.5 93 95.5 95.5 98

As seen in Table 4, for all testing function, their proportion of optimization successes are the lowest
when 1f = . For function Sphere, Rosenbrock, and Griewank, the better proportion of optimization
successes can be obtained when 0.05f = , and for function Rastrigrin, when 0.005f = , the proportion of
optimization successes is the highest. We can also find from Table 4, for function Sphere, Rosenbrock,
and Rastrigrin, after 200 runs, the optimizations are not convergent when 1f = .

From the experimental results, it can be seen that the constraint factor f formulated in Eq. (4) has a
great effects on the performance of the IWPSO, thinking about the measurement indices, 0.05f = is a
preferred one.

International Journal of
Soft Computing And Software Engineering (JSCSE)
ISSN: 2251-7545
Vol.2,No.2, 2012 DOI: 10.7321/jscse.v2.n2.1

7

5. Conclusion and discussion

Through the comparative experiments, parameter modifying methods to improve the performance of
the PSO is demonstrated the better balance between the global search ability and the local search ability,
while making less effect on the algorithm complexity. One of the well-known parameter based
improving PSO is the inertia weight PSO (IWPSO), with inertia weight linearly decreasing strategy, the
performance of the original PSO is improved obviously. In this paper, we empirically studied the IWPSO
with a constraint factor, and the experimental results shown that the factor can obviously affect the
performance of the original IWPSO. Under a certain conditions (40 populations, 1000 generations

0.9startw = , 0.4endw = , and 200 runs), and synthetically thinking about the measurement indices,
constraint factor 0.05f = is a preferred selection, which can provide better convergence speed, search
accuracy, and proportion of optimization successes for the benchmark testing functions.

Although the performance of the improved IWPSO by the constraint factor f is superior to the original
IWPSO, it still can not solve the problems of the premature convergence and falling into a local optimum
value. For open research, under the enlightenment of the population diversity methods, a variety group
structure PSO can be constructed by the improved IWPSO to overcome the above problems, and in the
future works, these improved PSO can be applied for further applications based on PSO algorithm, such
as image retrieval, mobile robot path planning, etc.

6. Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grants No.
61003196 & No. 61105066 and the Fundamental Research Funds for the Central Universities under
Grants K50510040007 & K50510040004.

The authors would like to thank all editors and reviewers for their constructive comments and
suggestions. Moreover, they would also want to thank Dr. ZHANG Xu and coworkers for their helps for
the preparations of our manuscript.

References

[1] J. Kennedy, R. C. Eberhart, “Particle Swarm Optimization”, In Proceedings of IEEE International

Conference on Neural Networks, pp. 1942-1948, 1995.
[2] Y. Shi, R. C. Eberhart, “A modified particle swarm Optimizer”, In Proceedings of the IEEE

Congress on Evolutionary Computation, Piscataway, pp. 69-73, 1998.
[3] R. C. Eberhart. Y. Shi, “Comparing inertia weights and constriction factors in Particle Swarm

Optimization”, In Proceedings of the Congress on Evolutionary Computation, pp.84-88, 2000.
[4] M. Clerc, J. Kennedy, “The particle swarm-explosion, stability and convergence in a

multidimensional complex space ”, IEEE Transactions on Evolutionary Computation, vol. 6, no. 1,
pp.58-73, 2002.

[5] A. Ratnaweera, S. K. Halgamuge, H. C. Watson, “Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients ”, IEEE Transactions on Evolutionary
Computation, vol. 3, no. 8, pp.240-255, 2004.

[6] J. Kennedy. “Small worlds and mega-minds: effects of neighborhood topology on particle swarm
performance”, In Proceedings of IEEE Congress on Evolutionary Computation Piscataway,
pp.1931-1938, 1999.

[7] J. Kennedy, R. Mendes, “Population Structure and Particle Swarm Performance”, In Proceedings of
IEEE Congress on Computational Intelligence, pp.1671-1676, 2002.

[8] R. Mendes, J. Kennedy, J. Neves, “The Fully Informed Particle Swarm: Simpler, Maybe Better ”,
IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp.204-210, 2004.

[9] J. S. Vesterstrom, J. Riget, T. Krink, “Division of labor in particle swarm optimization”, In
Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, pp.1570-1575.

International Journal of
Soft Computing And Software Engineering (JSCSE)
ISSN: 2251-7545
Vol.2,No.2, 2012 DOI: 10.7321/jscse.v2.n2.1

8

[10] F. van den Bergh, A. P. Engelbrecht, “A Cooperative approach to particle swarm optimization”,
IEEE Transactions on Evolutionary Computation, vol. 8 , no. 3, pp.225-239, 2004 .

[11] WU Xian-xiang, GUO Bao-long, WANG Juan, “Lotka-Volterra model based particle swarm
optimization”, Control and Decision, vol. 25, no. 11, pp.1619-1624, 2010.

[12] Y. Y. Yan, B. L. Guo, “Particle Swarm Optimization Inspired by r- and K-Selection in Ecology”, In
Proceedings of IEEE Congress on Evolutionary Computation, pp.1117-1123, 2008.

